Theoretical Study on the Hydrogen Bonding Interactions in Complexes of 5-Hydroxytryptamine with Water
Lingfei Guo
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorCorresponding Author
Zhengguo Huang
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, ChinaSearch for more papers by this authorTingting Shen
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorLingling Ma
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorXiqian Niu
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorLingfei Guo
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorCorresponding Author
Zhengguo Huang
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, ChinaSearch for more papers by this authorTingting Shen
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorLingling Ma
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorXiqian Niu
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Search for more papers by this authorAbstract
The energies, geometries and harmonic vibrational frequencies of 1:1 5-hydroxytryptamine-water (5-HT-H2O) complexes are studied at the MP2/6-311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO-EDA) were performed to explore the nature of the hydrogen-bonding interactions in these complexes. Various types of hydrogen bonds (H-bonds) are formed in these 5-HT-H2O complexes. The intermolecular C4H55-HT···Ow H-bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5-HT-H2O complexes. H-bond in which nitrogen atom of amino in 5-HT acted as proton donors was stronger than other H-bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5-HT-H2O complexes.
REFERENCES
- 1 Jin, G. P.; Chen, Q. Z.; Ding, Y. F.; He, J. B.. Electrochim. Acta, 2007, 52, 2535.
- 2 Guell, A. G.; Meadows, K. E.; Unwin, P. R.; Macpherson, J. V.. Phys. Chem. Chem. Phys., 2010, 12, 10108.
- 3 Bayari, S.; Saglam, S.; Ustundag, H. F.. J. Mol. Struct. (Theochem), 2005, 726, 225.
- 4 Galvez, O.; Gomez, P. C.; Pacios, L. F.. J. Chem. Phys., 2003, 118, 4878.
- 5 Lagutschenkov, A.; Langer, J.; Berden, G.; Oomens, J.; Dopfer, O.. J. Phys. Chem. A, 2010, 114, 13268.
- 6 LeGreve, T. A.; James, W. H., III; Zwier, T. S.. J. Phys. Chem. A, 2009, 113, 399.
- 7 Parreira, R. L. T.; Valdes, H.; Galembeck, S. E.. Chem. Phys., 2006, 331, 96.
- 8 van Mourik, T.; Emson, L. E. V.. Phys. Chem. Chem. Phys., 2002, 4, 5863.
- 9 Huang, Z. G.; Dai, Y. M.; Yu, L.. Struct. Chem., 2010, 21, 863.
- 10 Huang, Z. G.; Dai, Y. M.; Yu, L.; Wang, H. K.. J. Mol. Model., 2011, 17, 2609.
- 11 Wang, H. K.; Huang, Z. G.; Shen, T. T.; Guo, L. F.. Struct. Chem., 2012, 23, 1163.
- 12 Wang, H. K.; Huang, Z. G.; Shen, T. T.; Guo, L. F.. J. Mol. Model., 2012, 18, 3113.
- 13
Bader, R. F. W.,
Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, U. K., 1990.
10.1093/oso/9780198551683.001.0001 Google Scholar
- 14
Matta, C. F.;
Boyd, R. J.,
The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, 2007.
10.1002/9783527610709 Google Scholar
- 15
Popelier, P. L. A., Atoms in Molecules: An Introduction, Prentice Hall, London, 2000.
10.1039/9781847553317-00143 Google Scholar
- 16 Reed, A. E.; Curtiss, L. A.; Weinhold, F.. Chem. Rev., 1988, 88, 899.
- 17 Reed, A. E.; Weinhold, F.; Curtiss, L. A.; Pochatko, D. J.. J. Chem. Phys., 1986, 84, 5687.
- 18 Su, P. F.; Li, H.. J. Chem. Phys., 2009, 131, 014102.
- 19 McLean, A. D.; Chandler, G. S.. J. Chem. Phys., 1980, 72, 5639.
- 20 Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A.. J. Chem. Phys., 1980, 72, 650.
- 21 Boys, S. F.; Bernardi, F.. Mol. Phys., 1970, 19, 553.
- 22 Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.. J. Comput. Chem., 1993, 14, 1347.
- 23 Biegler-König, F.; Schönbohm, J. AIM2000, 1.0 ed., University of Applied Sciences, Bielefeld, Germany, 2000.
- 24 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.
- 25 Huang, Z. G.; Yu, L.; Dai, Y. M.; Wang, H. K.. J. Mol. Struct. (Theochem), 2010, 960, 98.
- 26 Huang, Z. G.; Yu, L.; Dai, Y. M.. Int. J. Quantum Chem., 2011, 111, 3915.
- 27 Tian, S. X.. J. Phys. Chem. B, 2004, 108, 20388.
- 28 Bondi, A.. J. Phys. Chem., 1964, 68, 441.
- 29 Nozad, A. G.; Meftah, S.; Ghasemi, M. H.; Kiyani, R. A.; Aghazadeh, M.. Biophys. Chem., 2009, 141, 49.
- 30 Zhou, H. W.; Lai, W. P.; Zhang, Z. Q.; Li, W. K.; Cheung, H. Y.. J. Comput.-Aided Mol. Des., 2009, 23, 153.
- 31 Miao, R.; Jin, C.; Yang, G. S.; Hong, J.; Zhao, C. M.; Zhu, L. G.. J. Phys. Chem. A, 2005, 109, 2340.
- 32 Koch, U.; Popelier, P. L. A.. J. Phys. Chem., 1995, 99, 9747.