Utilizing Formate as an Energy Carrier by Coupling CO2 Electrolysis with Fuel Cell Devices
Fabian Bienen
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Dennis Kopljar
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
These authors contributed equally.
Correspondence: Dennis Kopljar ([email protected]), German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany.Search for more papers by this authorArmin Löwe
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
These authors contributed equally.
Search for more papers by this authorPia Aßmann
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
Search for more papers by this authorMarvin Stoll
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Search for more papers by this authorPaul Rößner
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Search for more papers by this authorNorbert Wagner
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
Search for more papers by this authorAndreas Friedrich
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
Search for more papers by this authorElias Klemm
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Search for more papers by this authorFabian Bienen
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Dennis Kopljar
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
These authors contributed equally.
Correspondence: Dennis Kopljar ([email protected]), German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany.Search for more papers by this authorArmin Löwe
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
These authors contributed equally.
Search for more papers by this authorPia Aßmann
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
Search for more papers by this authorMarvin Stoll
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Search for more papers by this authorPaul Rößner
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Search for more papers by this authorNorbert Wagner
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
Search for more papers by this authorAndreas Friedrich
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38 – 40, 70569 Stuttgart, Germany
Search for more papers by this authorElias Klemm
University of Stuttgart, Institute of Chemical Technology, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Search for more papers by this authorAbstract
Electrochemical reduction of CO2 to useful chemicals can change the role of CO2 from harmful waste to a valuable feedstock. Despite a lot of progress in the alkaline electrochemical conversion of CO2 to formate, there is still a lack of potential applications for the generated aqueous formate solution. Here, the general ability of formate to be used as an energy or hydrogen carrier is discussed and compared to well-known energy storage chemicals. Concepts to employ formate solution as an energy carrier by combining CO2 electrolysis with the reconversion of formate into electricity via a direct formate fuel cell or catalytic decomposition to H2 combined with a proton exchange membrane fuel cell are demonstrated.
References
- 1 J. Leclaire, D. J. Heldebrant, Green Chem. 2018, 20 (22), 5058 – 5081. DOI: https://doi.org/10.1039/C8GC01962B
- 2 F. Ausfelder et al., Chem. Ing. Tech. 2015, 87 (1 – 2), 17 – 89. DOI: https://doi.org/10.1002/cite.201400183
- 3 D. Kopljar, N. Wagner, E. Klemm, Chem. Eng. Technol. 2016, 39 (11), 2042 – 2050. DOI: https://doi.org/10.1002/ceat.201600198
- 4 B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar, C. Janáky, Prog. Energy Combust. Sci. 2017, 62, 133 – 154. DOI: https://doi.org/10.1016/j.pecs.2017.05.005
- 5 L. C. Weng, A. T. Bell, A. Z. Weber, Phys. Chem. Chem. Phys. 2018, 20 (25), 16973 – 16984. DOI: https://doi.org/10.1039/c8cp01319e
- 6 A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, A. Irabien, J. CO2 Util. 2017, 18, 222 – 228. DOI: https://doi.org/10.1016/j.jcou.2017.01.021
- 7 H. R. Q. Jhong, F. R. Brushett, P. J. A. Kenis, Adv. Energy Mater. 2013, 3 (5), 589 – 599. DOI: https://doi.org/10.1002/aenm.201200759
- 8 D. Kopljar, A. Inan, P. Vindayer, N. Wagner, E. Klemm, J. Appl. Electrochem. 2014, 44 (10), 1107 – 1116. DOI: https://doi.org/10.1007/s10800-014-0731-x
- 9 P. Jeanty, C. Scherer, E. Magori, K. Wiesner-Fleischer, O. Hinrichsen, M. Fleischer, J. CO2 Util. 2018, 24, 454 – 462. DOI: https://doi.org/10.1016/J.JCOU.2018.01.011
- 10 D. Kopljar, A. Inan, P. Vindayer, R. Scholz, N. Frangos, N. Wagner, E. Klemm, Chem. Ing. Tech. 2015, 87 (6), 855 – 859. DOI: https://doi.org/10.1002/cite.201400135
- 11 Q. Lu, J. Rosen, F. Jiao, ChemCatChem 2015, 7 (1), 38 – 47. DOI: https://doi.org/10.1002/cctc.201402669
- 12 A. J. Martín, G. O. Larrazábal, J. Pérez-Ramírez, Green Chem. 2015, 17 (12), 5114 – 5130. DOI: https://doi.org/10.1039/C5GC01893E
- 13 A. S. Varela, W. Ju, P. Strasser, Adv. Energy Mater. 2018, 8 (30), 1703614. DOI: https://doi.org/10.1002/aenm.201703614
- 14 J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, T. F. Jaramillo, ACS Catal. 2017, 7 (7), 4822 – 4827. DOI: https://doi.org/10.1021/acscatal.7b00687
- 15 C. W. Lee, N. H. Cho, K. D. Yang, K. T. Nam, ChemElectroChem 2017, 4 (9), 2130 – 2136. DOI: https://doi.org/10.1002/celc.201700335
- 16 R. M. Arán-Ais, D. Gao, B. Roldan Cuenya, Acc. Chem. Res. 2018, 51 (11), 2906 – 2917. DOI: https://doi.org/10.1021/acs.accounts.8b00360
- 17 A. J. Martín, G. O. Larrazábal, J. Pérez-Ramírez, Green Chem. 2015, 17 (12), 5114 – 5130. DOI: https://doi.org/10.1039/C5GC01893E
- 18 K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5 (5), 7050 – 7059. DOI: https://doi.org/10.1039/c2ee21234j
- 19 M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 2018, 57 (6), 2165 – 2177. DOI: https://doi.org/10.1021/acs.iecr.7b03514
- 20 S. Verma, B. Kim, H. R. M. Jhong, S. Ma, P. J. A. Kenis, ChemSusChem 2016, 9 (15), 1972 – 1979. DOI: https://doi.org/10.1002/cssc.201600394
- 21 R. Masel, R. Ni, Z. Liu, Q. Chen, R. Kutz, L. Nereng, D. Lutz, K. Lewinski, Energy Procedia 2014, 63, 7959 – 7962. DOI: https://doi.org/10.1016/j.egypro.2014.11.832
- 22 J. M. Spurgeon, B. Kumar, Energy Environ. Sci. 2018, 11 (6), 1536 – 1551. DOI: https://doi.org/10.1039/c8ee00097b
- 23 A. K. Singh, S. Singh, A. Kumar, Catal. Sci. Technol. 2016, 6 (1), 12 – 40. DOI: https://doi.org/10.1039/C5CY01276G
- 24 M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison, E. Tzimas, Int. J. Hydrogen Energy 2016, 41 (37), 16444 – 16462. DOI: https://doi.org/10.1016/j.ijhydene.2016.05.199
- 25 P. Preuster, A. Alekseev, P. Wasserscheid, Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445 – 471 DOI: https://doi.org/10.1146/annurev-chembioeng-060816-101334
- 26 M. Bevilacqua, J. Filippi, H. A. Miller, F. Vizza, Energy Technol. 2015, 3 (3), 197 – 210. DOI: https://doi.org/10.1002/ente.201402166
- 27 B. C. Ong, S. K. Kamarudin, S. Basri, Int. J. Hydrogen Energy 2017, 42 (15), 10142 – 10157. DOI: https://doi.org/10.1016/j.ijhydene.2017.01.117
- 28 A. M. Bartrom, J. Ta, T. Q. Nguyen, J. Her, A. Donovan, J. L. Haan, J. Power Sources 2013, 229, 234 – 238. DOI: https://doi.org/10.1016/j.jpowsour.2012.12.007
- 29 D. H. Setiadjid, Chem. Eng. Trans. 2018, 70, 409 – 414. DOI: https://doi.org/10.3303/CET1870069
- 30 H. Miller, J. Ruggeri, A. Marchionni, M. Bellini, M. Pagliaro, C. Bartoli, A. Pucci, E. Passaglia, F. Vizza, Energies 2018, 11 (2), 369. DOI: https://doi.org/10.3390/en11020369
- 31 A. M. Bartrom, J. L. Haan, J. Power Sources 2012, 214, 68 – 74. DOI: https://doi.org/10.1016/j.jpowsour.2012.04.032
- 32 K. Tran, T. Q. Nguyen, A. M. Bartrom, A. Sadiki, J. L. Haan, Fuel Cells 2014, 14 (6), 834 – 841. DOI: https://doi.org/10.1002/fuce.201300291
- 33 L. An, R. Chen, J. Power Sources 2016, 320, 127 – 139. DOI: https://doi.org/10.1016/j.jpowsour.2016.04.082
- 34 J. Jiang, A. Wieckowski, Electrochem. Commun. 2012, 18 (1), 41 – 43. DOI: https://doi.org/10.1016/j.elecom.2012.02.017
- 35 X. Yu, A. Manthiram, Appl. Catal., B 2015, 165, 63 – 67. DOI: https://doi.org/10.1016/j.apcatb.2014.09.069
- 36 L. Q. Wang, M. Bellini, J. Filippi, M. Folliero, A. Lavacchi, M. Innocenti, A. Marchionni, H. A. Miller, F. Vizza, Appl. Energy 2016, 175, 479 – 487. DOI: https://doi.org/10.1016/J.APENERGY.2016.02.129
- 37 D. Mellmann, P. Sponholz, H. Junge, M. Beller, Chem. Soc. Rev. 2016, 45 (14), 3954 – 3988. DOI: https://doi.org/10.1039/C5CS00618J
- 38 M. Grasemann, G. Laurenczy, Energy Environ. Sci. 2012, 5 (8), 8171 – 8181. DOI: https://doi.org/10.1039/c2ee21928j
- 39 J. Su, L. Yang, M. Lu, H. Lin, J. Su, L. Yang, M. Lu, H. Lin, ChemSusChem 2015, 8 (5), 813 – 816. DOI: https://doi.org/10.1002/cssc.201403251
- 40 Q. Y. Bi, J. D. Lin, Y. M. Liu, X. L. Du, J. Q. Wang, H. Y. He, Y. Cao, Angew. Chem., Int. Ed. 2014, 53 (49), 13583 – 13587. DOI: https://doi.org/10.1002/anie.201409500
- 41 S. Singh, S. Li, R. Carrasquillo-Flores, A. C. Alba-Rubio, J. A. Dumesic, M. Mavrikakis, AIChE J. 2014, 60 (4), 1303 – 1319. DOI: https://doi.org/10.1002/aic.14401
- 42 H. Wiener, Y. Sasson, J. Blum, J. Mol. Catal. 1986, 35 (3), 277 – 284. DOI: https://doi.org/10.1016/0304-5102(86)87075-4
- 43 H. R. M. Jhong, S. Ma, P. J. Kenis, Curr. Opin. Chem. Eng. 2013, 2 (2), 191 – 199. DOI: https://doi.org/10.1016/j.coche.2013.03.005
- 44 H. Y. Kim, I. Choi, S. H. Ahn, S. J. Hwang, S. J. Yoo, J. Han, J. Kim, H. Park, J. H. Jang, S. K. Kim, Int. J. Hydrogen Energy 2014, 39 (29), 16506 – 16512. DOI: https://doi.org/10.1016/j.ijhydene.2014.03.145
- 45 J. Wu, F. G. Risalvato, F.-S. Ke, P. J. Pellechia, X.-D. Zhou, J. Electrochem. Soc. 2012, 159 (7), F353 – F359. DOI: https://doi.org/10.1149/2.049207jes
- 46 H. Yang, J. J. Kaczur, S. D. Sajjad, R. I. Masel, J. CO2 Util. 2017, 20, 208 – 217. DOI: https://doi.org/10.1016/j.jcou.2017.04.011
- 47 E. J. Dufek, T. E. Lister, M. E. McIlwain, Electrochem. Solid-State Lett. 2012, 15 (4), B48 – B50. DOI: https://doi.org/10.1149/2.010204esl
- 48 Y. Hori, H. Ito, K. Okano, K. Nagasu, S. Sato, Electrochim. Acta 2003, 48 (18), 2651 – 2657. DOI: https://doi.org/10.1016/S0013-4686(03)00311-6
- 49 C. Oloman, H. Li, ChemSusChem 2008, 1 (5), 385 – 391. DOI: https://doi.org/10.1002/cssc.200800015
- 50 K. C. Song, Y. Kang, Mater. Lett. 2000, 42 (5), 283 – 289. DOI: https://doi.org/10.1016/S0167-577X(99)00199-8
- 51 D. A. J. Rand, A. L. Dicks, Fuel Cell Systems Explained, 3rd ed., John Wiley & Sons, Chichester 2018.
- 52 P. Preuster, A. Alekseev, P. Wasserscheid, Annu. Rev. Chem. Biomol. Eng. 2017, 8 (1), 445 – 471. DOI: https://doi.org/10.1146/annurev-chembioeng-060816-101334
- 53 P. Preuster, C. Papp, P. Wasserscheid, Acc. Chem. Res. 2017, 50 (1), 74 – 85. DOI: https://doi.org/10.1021/acs.accounts.6b00474
- 54 P. Atkins, J. de Paula, Atkins' Physical Chemistry, Oxford University Press, Oxford 2006.
- 55 K. Müller, J. Völkl, W. Arlt, Energy Technol. 2013, 1 (1), 20 – 24. DOI: https://doi.org/10.1002/ente.201200045