Selective Liquid Phase Adsorption of Biogenic HMF on Hydrophobic Spherical Activated Carbons
Kai Schute
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
Search for more papers by this authorYannik Louven
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
Search for more papers by this authorChaline Detoni
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
Federal University of Rio de Janeiro, Chemistry School, University City, Technology Center, Block E, Rio de Janeiro, RJ 21945-970, Brazil.
Search for more papers by this authorCorresponding Author
Marcus Rose
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, GermanySearch for more papers by this authorKai Schute
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
Search for more papers by this authorYannik Louven
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
Search for more papers by this authorChaline Detoni
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
Federal University of Rio de Janeiro, Chemistry School, University City, Technology Center, Block E, Rio de Janeiro, RJ 21945-970, Brazil.
Search for more papers by this authorCorresponding Author
Marcus Rose
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany
RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, GermanySearch for more papers by this authorAbstract
The adsorption of biogenic hydroxymethylfurfural and fructose from aqueous phase reaction mixtures on polymer-based spherical activated carbons was studied. The adsorbents show a high capacity in combination with an outstanding selectivity due to their hydrophobic surface. Equilibrium isotherms and breakthrough curves of single and multicomponent solutions as well as the desorption behavior were measured and modelled accordingly. Overall, the results obtained enable further process development for adsorptive liquid phase separation in future biorefinery processes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cite_201500133_sm_miscellaneous_information.pdf250.4 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695 – 699.
- 2 P. Y. Dapsens, C. Mondelli, J. Pérez-Ramírez, ACS Catal. 2012, 2, 1487 – 1499.
- 3 H.-J. Huang, S. Ramaswamy, U. W. Tschirner, B. V. Ramarao, Sep. Purif. Technol. 2008, 62, 1 – 21.
- 4 A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, A. M. Afonso, Green Chem. 2011, 13, 754 – 793.
- 5 R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499 – 1597.
- 6 X. Qi, M. Watanabe, T. M. Aida, R. L. J. Smith, Ind. Eng. Chem. Res. 2008, 47, 9234 – 9239.
- 7 T. Zhang, R. Kumar, C. E. Wyman, RSC Adv. 2013, 3, 9809 – 9819.
- 8 I. Delidovich, K. Leonhard, R. Palkovits, Energy Environ. Sci. 2014, 7, 2803 – 2830.
- 9 P. Vinke, H. van Bekkum, Starch/Stärke 1992, 44, 90 – 96.
- 10 N. Rajabbeigi, R. Ranjan, M. Tsapatsis, Microporous Mesoporous Mater. 2012, 158, 253 – 256.
- 11 W. C. Yoo, N. Rajabbeigi, E. E. Mallon, M. Tsapatsis, M. A. Snyder, Microporous Mesoporous Mater. 2014, 184, 72 – 82.
- 12 P. Dornath, W. Fan, Microporous Mesoporous Mater. 2014, 191, 10 – 17.
- 13 T. D. Swift, C. Bagia, V. Nikolakis, D. G. Vlachos, G. Peklaris, P. Dornath, W. Fan, AIChE J. 2013, 59, 3378 – 3390.
- 14 R. Ranjan, S. Thust, C. E. Gounaris, M. Woo, C. A. Floudas, M. von Keitz, K. J. Valentas, J. Wei, M. Tsapatsis, Microporous Mesoporous Mater. 2009, 122, 143 – 148.
- 15 M. León, D. Swift, V. Nikolakis, D. G. Vlachos, Langmuir 2013, 29, 6597 – 6605.
- 16 C. Detoni, C. H. Gierlich, M. Rose, R. Palkovits, ACS Sustainable Chem. Eng. 2014, 2, 2407 – 2415.
- 17 H. Jin, Y. Li, X. Liu, Y. Ban, Y. Peng, W. Jiao, W. Yang, Chem. Eng. Sci. 2015, 124, 170 – 178.
- 18 K. Schute, M. Rose, ChemSusChem 2015, 8, 3419 – 3423. DOI: cssc.201500829
- 19 B. Böhringer, O. G. Gonzalez, I. Eckle, M. Müller, J.-M. Giebelhausen, C. Schrage, S. Fichtner, Chem. Ing. Tech. 2011, 83, 53 – 60.
- 20 C. Schrage, A. Modrow, S. Fichtner, J.-M. Giebelhausen, B. Böhringer, Chem. Ing. Tech. 2014, 86, 27 – 34.
- 21 H. C. Thomas, J. Am. Chem. Soc. 1944, 66, 1664 – 1666.
- 22 Z. Xu, J.-G. Cai, B.-C. Pan, J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) 2013, 14, 155 – 176.
- 23 M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051 – 1069.
- 24 C. Aharoni, Langmuir 1997, 13, 1270 – 1273.