Immobilization Method to Separate Microalgae Biomass for Fatty Acid Methyl Ester Production
Noor Raihana Abu Sepian
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Nur Hidayah Mat Yasin
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Universiti Malaysia Pahang, Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Correspondence: Nur Hidayah Mat Yasin ([email protected]), Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.Search for more papers by this authorNagaarasan Ramesh
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorNoor Raihana Abu Sepian
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Nur Hidayah Mat Yasin
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Universiti Malaysia Pahang, Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Correspondence: Nur Hidayah Mat Yasin ([email protected]), Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.Search for more papers by this authorNagaarasan Ramesh
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorAbstract
An immobilization method for simplified separation of cultured cells and their products from the growth media was developed. The growth rates of both immobilized and free cells of the microalga Chlorella vulgaris were compared. The free and immobilized cells reached nearly identical cell densities. The reported immobilization strategy uses a combination of matrices (sodium alginate (SA), calcium alginate (CA), and sodium carboxymethyl cellulose (CMC)) at different matrix/microalgae volumetric ratios of 0.3:1 and 1:1. The microalgae in the SACACMC/Mc (0.3:1) beads achieved the highest cell density. The cells immobilized in SACACMC/Mc (0.3:1) gave the highest lipid yield, as compared to the cells immobilized in SA. Pore size and membrane thickness analysis as well as surface images of SACACMC/Mc (0.3:1) showed that the mixed matrix had a unique structure favoring lipid production.
References
- 1 A. Ortiz, M. J. García-Galán, J. García, R. Díez-Montero, Sep. Purif. Technol. 2021, 259, 118171. DOI: https://doi.org/10.1016/j.seppur.2020.118171
- 2 D. A. Wood, Bioresour. Technol. Rep. 2021, 14, 100665. DOI: https://doi.org/10.1016/j.biteb.2021.100665
- 3 E. Vimali, M. Jayaram, N. S. Vignesh, B. Ashokkumar, I. Ganeshmoorthy, V. Sivasubramanian, P. Varalakshmi, Chem. Eng. Technol. 2021, 44, 852–857. DOI: https://doi.org/10.1002/ceat.202000494
- 4 J. Trelles, C. Rivero, in Immobilization of Enzymes and Cells (Ed: P. Marton), Methods in Molecular Biology, Vol. 1051, Springer, Berlin 2020, 365–374.
- 5 M. Alhattab, M. S. Brooks, Biomass Bioenergy 2020, 134, 105472. DOI: https://doi.org/10.1016/j.biombioe.2020.105472
- 6 B. Cheirsilp, T. Thawechai, P. Prasertsan, Bioresour. Technol. 2017, 241, 787–794. DOI: https://doi.org/10.1016/j.biortech.2017.06.016
- 7 M. K. Lam, K. T. Lee, Chem. Eng. J. 2012, 191, 263–268. DOI: https://doi.org/10.1016/j.cej.2012.03.013
- 8
N. R. Abu Sepian, N. H. Mat Yasin, N. Zainol, IOP Conf. Ser.: Mater. Sci. Eng.
2020, 991, 012007. DOI: https://doi.org/10.1088/1757-899X/991/1/012007
10.1088/1757?899X/991/1/012007 Google Scholar
- 9 N. R. Abu Sepian, N. H. Mat Yasin, N. Zainol, N. H. Rushan, A. L. Ahmad, Environ. Technol. 2019, 40, 1408691. DOI: https://doi.org/10.1080/09593330.2017.1408691
- 10 E. Eroglu, S. M. Smith, C. L. Raston, Biomass Biofuels from Microalgae, 2nd ed., Springer, Cham, Switzerland 2015.
- 11 N. R. Abu Sepian, N. H. Mat Yasin, N. Zainol, Chem. Eng. Commun. 2021, 208, 601–612. DOI: https://doi.org/10.1080/00986445.2019.1680372
- 12www.ccap.ac.uk (Accessed on September 01, 2015)
- 13 C. Tan, N. S. Nik Meriam, S. K. Loh, S. Phang, J. Oil Palm Res. 2016, 28, 496–509.
- 14 N. R. Abu Sepian, N. H. Mat Yasin, N. Zainol, N. H. Rushan, A. L. Ahmad, Environ. Technol. 2019, 40, 1110–1117. DOI: https://doi.org/10.1080/09593330.2017.1408691
- 15 N. H. Md Sai'aan, C. F. Soon, K. S. Tee, M. K. Ahmad, M. Youseffi, S. A. Khagani, 2016 IEEE EMBS Conf. on Biomedical Engineering and Sciences (IECBES 2016) 2017, 611–616.
- 16 E. Bligh, W. Dyer, Can. J. Biochem. 1959, 37, 911–917. DOI: https://doi.org/10.1139/o59-099
- 17
N. H. Mat Yasin, N. I. Shafei, N. H. Rushan, N. R. Abu Sepian, F. Mohd Said, Mater. Today Proc.
2019, 19, 1582–1590.
10.1016/j.matpr.2019.11.186 Google Scholar
- 18 P. Chevalier, J. De la Noüe, Enzyme Microb. Technol. 1985, 7, 621–624.
- 19 P. S. Lau, N. F. Y. Tam, Y. S. Wong, Bioresour. Technol. 1998, 63, 115–121. DOI: https://doi.org/10.1016/S0960-8524(97)00111-9
- 20 P. K. Robinson, K. H. Goulding, A. L. Mak, M. D. Trevan, Enzyme Microb. Technol. 1986, 8, 729–733.
- 21 K. Katam, D. Bhattacharyya, J. Ind. Eng. Chem. 2019, 69, 295–303. DOI: https://doi.org/10.1016/j.jiec.2018.09.031
- 22 D. S. Joo, M. G. Cho, J. S. Lee, J. H. Park, J. K. Kwak, Y. H. Han, R. Bucholz, J. Microencapsul. 2001, 18, 567–576. DOI: https://doi.org/10.1080/02652040010018065
- 23 X. Zeng, M. K. Danquah, R. Halim, S. Yang, X. D. Chen, Y. Lu, J. Chem. Technol. Biotechnol. 2013, 88, 247–254. DOI: https://doi.org/10.1002/jctb.3821
- 24 K. I. Draget, G. Skjåk Bræk, O. Smidsrød, Carbohydr. Polym. 1994, 25, 31–38. DOI: https://doi.org/10.1016/0144-8617(94)90159-7
- 25 D. Johnston, P. Kumar, Y. E. Choonara, L. C. du Toit, V. Pillay, J. Mech. Behav. Biomed. Mater. 2013, 23, 80–102. DOI: https://doi.org/10.1016/j.jmbbm.2013.03.026
- 26 L. R. Andrade, L. T. Salgado, M. Farina, M. S. Pereira, P. A. S. Mourão, G. M. Amado Filho, J. Struct. Biol. 2004, 145, 216–225. DOI: https://doi.org/10.1016/j.jsb.2003.11.011
- 27
A. Nussinovitch, Bead Formation, Strengthening, and Modification, Springer, Berlin
2010.
10.1007/978-1-4419-6618-6_2 Google Scholar
- 28 O. Smidsrød, G. Skjåk-Bræk, Trends Biotechnol. 1990, 8, 71–78. DOI: https://doi.org/10.1016/0167-7799(90)90139-O
- 29 L. L. Zhuang, D. Yu, J. Zhang, F.-f. Liu, Y. H. Wu, T. Y. Zhang, G. H. Dao, H. Y. Hu, Renewable Sustainable Energy Rev. 2018, 94, 1110–1119. DOI: https://doi.org/10.1016/j.rser.2018.06.006
- 30 Y. Fan, Y. Wu, P. Fang, Z. Ming, Water Sci. Technol. 2017, 75, 75–83. DOI: https://doi.org/10.2166/wst.2016.491
- 31 S. Deshmukh, R. Kumar, K. Bala, Fuel Process. Technol. 2019, 191, 232–247. DOI: https://doi.org/10.1016/j.fuproc.2019.03.013
- 32 S. Srinuanpan, B. Cheirsilp, P. Prasertsan, Y. Kato, Renewable Energy 2018, 122, 507–516. DOI: https://doi.org/10.1016/j.renene.2018.01.121
- 33 G. Knothe, Fuel Process. Technol. 2005, 86, 1059–1070. DOI: https://doi.org/10.1016/j.fuproc.2004.11.002
- 34 M. W. Mumtaz, A. Adnan, H. Mukhtar, U. Rashid, M. Danish, in Clean Energy for Sustainable Development (Eds: M. G. Rasul, A. K. Azad, S. C. Sharma), Elsevier, Amsterdam 2017, Ch. 15. DOI: https://doi.org/10.1016/B978-0-12-805423-9.00015-6
- 35 A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, J. K. Lim, Environ. Technol. 2014, 35, 2244–2253. DOI: https://doi.org/10.1080/09593330.2014.900117
- 36 J. K. Suastes-Rivas, R. Hernández-Altamirano, V. Y. Mena-Cervantes, E. J. Barrios Gómez, I. Chairez, Fuel 2020, 280, 118633. DOI: https://doi.org/10.1016/j.fuel.2020.118633
- 37 M. L. Menegazzo, G. G. Fonseca, Renewable Sustainable Energy Rev. 2019, 107, 87–107. DOI: https://doi.org/10.1016/j.rser.2019.01.064
- 38 J. R. Rajanren, H. M. Ismail, Biofuels 2017, 8, 37–47. DOI: https://doi.org/10.1080/17597269.2016.1200861