Simulation of an Integrated Anaerobic Digestion and Combined Heat and Power System for Food Waste Utilization
Nailah Fasihah Sidek
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Noorlisa Harun
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Correspondence: Noorlisa Harun ([email protected]), Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.Search for more papers by this authorFatin Nur Liyana Mohd Zamri
Universiti Malaysia Pahang, Department of Chemical Engineering, College of Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorNailah Fasihah Sidek
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Noorlisa Harun
Universiti Malaysia Pahang, Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Correspondence: Noorlisa Harun ([email protected]), Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.Search for more papers by this authorFatin Nur Liyana Mohd Zamri
Universiti Malaysia Pahang, Department of Chemical Engineering, College of Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorAbstract
Demand for renewable energy such as biogas is increasing because it is considered a clean and environmentally friendly source of energy and has the potential for minimizing carbon emissions. Biogas production through anaerobic digestion (AD) of organic materials is considered one of the most sustainable ways. It can be utilized directly or indirectly to generate heat, electricity, or mechanical energy for transportation. One of the most effective ways to use biogas is the combined heat and power (CHP) system, especially in combination with simulation software to facilitate the whole process without an actual experimental setup, easing the evaluation and analysis process. This study aims to develop an integrated model of AD for biogas production from food waste and CHP plants, through simulation using Aspen Plus software. The simulated results show that the developed process model can predict the heat and power produced from food waste feedstock.
References
- 1 P. Beleya, X. C. Cheah, L. W. Chua, J. Adv. Res. Bus. Manag. Stud. 2019, 16 (1), 44–59.
- 2
D. Deublein, A. Steinhauser, Biogas from Waste and Renewable Resources, Wiley-VCH, Weinheim
2008.
10.1002/9783527621705 Google Scholar
- 3 M. Mel, A. S. H. Yong, Avicenna, S. I. Ihsan, R. H. Setyobudi, Energy Procedia 2015, 65, 204–214. DOI: https://doi.org/10.1016/j.egypro.2015.01.026
- 4 Q. Zhang, J. Hu, D. J. Lee, Renewable Energy 2016, 98, 108–119. DOI: https://doi.org/10.1016/j.renene.2016.02.029
- 5 D. J. Batstone et al., Water Sci. Technol. 2002, 45 (10), 65–73. DOI: https://doi.org/10.2166/wst.2002.0292
- 6 A. Schneider, Y. Barbot, F. Kuhnen, R. Benz, V. C. Hass, Int. J. Eng. Tech. Res. 2015, 3 (7), 267–275.
- 7 H. Al-Rubaye, S. Karambelkar, M. M. Shivashankaraiah, J. D. Smith, Biofuels 2019, 10 (2), 181–191. DOI: https://doi.org/10.1080/17597269.2017.1309854
- 8 C. M. Braguglia, A. Gallipoli, A. Gianico, P. Pagliaccia, Bioresour. Technol. 2018, 248, 37–56. DOI: https://doi.org/10.1016/j.biortech.2017.06.145
- 9
M. Golušin, S. Dodić, S. Popov, Strategic priorities of sustainable energy development, in Sustainable Energy Management, Academic Press, Cambridge, MA
2013, pp. 243–333.
10.1016/B978-0-12-415978-5.00007-2 Google Scholar
- 10 Z. B. Hashim, M. Nabil, B. Muhtazaruddin, M. Binti, A. Majid, RnD Conf., Bangi, Malaysia, October 2010.
- 11 A. Furtado Amaral et al., Energy 2020, 203, 117820. DOI: https://doi.org/10.1016/j.energy.2020.117820
- 12
M. Prestipino, V. Palomba, S. Vasta, A. Freni, A. Galvagno, Energy Procedia
2016, 101, 1256–1263. DOI: https://doi.org/10.1016/j.egypro.2016.11.141
10.1016/j.egypro.2016.11.141 Google Scholar
- 13 T. Kozak, A. Majchrzycka, Fac. Math. Nat. Sci. 2009, 184–189, https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/013/47013704.pdf?r=1&r=1%.
- 14 A. D. Zare, R. K. Saray, S. Mirmasoumi, K. Bahlouli, Energy 2019, 181, 635–644. DOI: https://doi.org/10.1016/j.energy.2019.05.182
- 15https://www.epa.gov/chp/what-chp (last accessed October 08, 2021).
- 16 I. M. Bamatov, D. M. Bamatov, J. Phys. Conf. Ser. 2019, 1399 (5), 055045. DOI: https://doi.org/10.1088/1742-6596/1399/5/055045
- 17 R. Hakawati, B. M. Smyth, G. McCullough, F. De Rosa, D. Rooney, Appl. Energy 2017, 206, 1076–1087. DOI: https://doi.org/10.1016/j.apenergy.2017.08.068
- 18
A. N. Rahman, M. M. Ibrahim, T. K. Abdalla, Int. J. Phys. Sci.
2011, 6 (14), 3539–3550. DOI: https://doi.org/10.5897/IJPS11.272
10.5897/IJPS11.272 Google Scholar
- 19
H. Smith, in Gold Ore Processing: Project Development and Operations (Ed: M. Adams), Elsevier, Amsterdam
2016, pp. 141–148. DOI: https://doi.org/10.1016/B978-0-444-63658-4.00009-8
10.1016/B978-0-444-63658-4.00009-8 Google Scholar
- 20 S. Mani, J. Sundaram, K. C. Das, Biomass Bioenergy 2016, 93, 158–167. DOI: https://doi.org/10.1016/j.biombioe.2016.07.018
- 21
P. Fasahati, J. J. Liu, IFAC Proc. Vol.
2012, 45 (15), 597–602. DOI: https://doi.org/10.3182/20120710-4-SG-2026.00055
10.3182/20120710?4?SG?2026.00055 Google Scholar
- 22 K. Rajendran, H. R. Kankanala, M. Lundin, M. J. Taherzadeh, Bioresour. Technol. 2014, 168, 7–13. DOI: https://doi.org/10.1016/j.biortech.2014.01.051
- 23 J. C. Solarte-Toro, Y. Chacón-Pérez, C. A. Cardona-Alzate, Electron. J. Biotechnol. 2018, 33, 52–62. DOI: https://doi.org/10.1016/j.ejbt.2018.03.005
- 24 N. Harun, Z. Hassan, N. Zainol, W. H. W. Ibrahim, H. Hashim, Chem. Eng. Technol. 2019, 42 (9), 1834–1839. DOI: https://doi.org/10.1002/ceat.201800637
- 25 H. H. Nguyen, Modelling of food waste digestion using ADM1 integrated with Aspen Plus, Ph.D. Thesis, University of Southampton 2014, 273.
- 26
M. Rahman, Y. S. Lee, F. M. Tamiri, M. Gan, J. Hong, Appl. Effl. Treat.
2018, 105–122. DOI: https://doi.org/10.1007/978-981-10-8129-3
10.1007/978?981?10?8129?3 Google Scholar
- 27
L. Yu, P. C. Wensel, J. Biorem. Biodegrad.
2013, S4, 003. DOI: https://doi.org/10.4172/2155-6199.S4-003
10.4172/2155?6199.S4?003 Google Scholar
- 28 S. Basumatary, S. Das, P. Kalita, P. Goswami, Bioresour. Technol. Rep. 2021, 14, 100675. DOI: https://doi.org/10.1016/j.biteb.2021.100675
- 29 P. Kastanidis, V. K. Michalis, G. E. Romanos, A. K. Stubos, I. G. Economou, I. N. Tsimpanogiannis, J. Chem. Eng. Data 2018, 63 (4), 1027–1035. DOI: https://doi.org/10.1021/acs.jced.7b00777
- 30 N. Harun, N. A. Othman, N. A. Zaki, N. A. M. Rasul, R. A. Samah, H. Hashim, Mater. Today Proc. 2019, 19, 1315–1320. DOI: https://doi.org/10.1016/j.matpr.2019.11.143
- 31 G. A. Gebreslase, F. G. Gebrihet, M. M. Atsbha, Int. J. Innov. Sci. Res. Technol. 2018, 3 (7), 573–599.
- 32 S. A. Flamarz Al-Arkawazi, Cogent Eng. 2019, 6 (1), 1–22. DOI: https://doi.org/10.1080/23311916.2019.1616866
- 33 A. Barragán-Escandón, J. M. O. Ruiz, J. D. C. Tigre, E. F. Zalamea-León, Sustainability 2020, 12 (7), 2669. DOI: https://doi.org/10.3390/su12072669