Research Article
3D CFD Simulation of Reaction Cells, Cooling Cells, and Manifolds of a Flatbed Reactor for CO2 Methanation
Karim Ghaib,
Corresponding Author
Karim Ghaib
Annastrasse 48, 64673 Zwingenberg, Deutschland
Correspondence: Karim Ghaib ([email protected]), Annastrasse 48, 64673 Zwingenberg, Deutschland.Search for more papers by this authorKarim Ghaib,
Corresponding Author
Karim Ghaib
Annastrasse 48, 64673 Zwingenberg, Deutschland
Correspondence: Karim Ghaib ([email protected]), Annastrasse 48, 64673 Zwingenberg, Deutschland.Search for more papers by this authorAbstract
The methanation of CO2 has attracted great interest in recent years as a technology to generate renewable synthetic natural gas and to recycle CO2 from different sectors. The actual development state of a flatbed reactor for the methanation of pure stoichiometric feed gas is presented. Additionally, computational fluid dynamics (CFD)-based design strategies are introduced which can be applied for the development and optimization of different processing units. The results of the reactor development demonstrate a good heat exchange and flow distribution in the reactor.
References
- 1 M. Specht, J. Brellochs, V. Frick, B. Stürmer, U. Zuberbühler, M. Sterner, G. Waldstein, Erdöl Erdgas Kohle 2010, 126, 342–346.
- 2 S. K. Hoekman, A. Broch, C. Robbins, R. Purcell, Int. J. Greenhouse Gas Control 2010, 4, 44–50. DOI: https://doi.org/10.1016/j.ijggc.2009.09.012
- 3 M. Götz, F. Ortloff, S. Bajohr, F. Graf, gwf-Gas|Erdgas 2011, 152, 200–210.
- 4 K. Ghaib, K. M. Nitz, F.-Z. Ben-Fares, Chem. Biol. Eng. Rev. 2016, 3 (6), 266–275. DOI: https://doi.org/10.1002/cite.201600066
- 5 D. C. D. da Silva, S. Letichevsky, L. E. P. Borges, L. G. Appel, Int. J. Hydrogen Energy 2012, 37 (11), 8923–8928. DOI: https://doi.org/10.1016/j.ijhydene.2012.03.020
- 6 P. J. Lunde, F. L. Kester, J. Catal. 1973, 30 (3), 423–429. DOI: https://doi.org/10.1016/0021-9517(73)90159-0
- 7 A. Karelovic, P. Ruiz, J. Catal. 2013, 301, 141–153. DOI: https://doi.org/10.1016/j.jcat.2013.02.009
- 8 S. Hwang, U. G. Hong, J. Lee, J. G. Seo, J. H. Baik, D. J. Koh, H. Lim, K. Song, J. Ind. Eng. Chem. 2013, 19 (6), 2016–2021. DOI: https://doi.org/10.1016/j.jiec.2013.03.015
- 9 N. Srisawad, W. Chaitree, O. Mekasuwandumrong, A. Shotipruk, B. Jongsomjit, J. Panpranot, React. Kinet. Mech. Catal. 2012, 107 (1), 179–188. DOI: https://doi.org/10.1007/s11144-012-0459-8
- 10 X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, J. Energy Chem. 2016, 25, 553–565. DOI: https://doi.org/10.1016/j.jechem.2016.03.009
- 11 K. Ghaib, F.-Z. Ben-Fares, Renewable Sustainable Energy Rev. 2018, 81 (1), 433–446. DOI: https://doi.org/10.1016/j.rser.2017.08.004
- 12 W. Gac, W. Zawadzki, M. Rotko, M. Greluk, G. Słowik, G. Kolb, Catal. Today, in press. DOI: https://doi.org/10.1016/j.cattod.2019.07.026
- 13 Z. Liu, B. Chu, X. Zhai, Y. Jin, Y. Cheng, Fuel 2012, 95, 599–605. DOI: https://doi.org/10.1016/j.fuel.2011.12.045
- 14 S. Ratchahat, M. Sudoh, Y. Suzuki, W. Kawasaki, R. Watanabe, C. Fukuhara, J. CO2 Util. 2018, 24, 210–219. DOI: https://doi.org/10.1016/j.jcou.2018.01.004
- 15 D. Schlereth, O. Hinrichsen, Chem. Eng. Res. Des. 2014, 92 (4), 702–712. DOI: https://doi.org/10.1016/j.cherd.2013.11.014
- 16 K. Ghaib, Chem. Ing. Tech. 2020, 92 (3), 238–247. DOI: https://doi.org/10.1002/cite.201900087
- 17 X. Zhai, S. Ding, Y. Cheng, Y. Jin, Y. Cheng, Int. J. Hydrogen Energy 2010, 35, 5383–5392. DOI: https://doi.org/10.1016/j.ijhydene.2010.03.034
- 18 A. Fazeli, M. Behnam, Int. J. Hydrogen Energy 2010, 35 (17), 9496–9503. DOI: https://doi.org/10.1016/j.ijhydene.2010.05.052
- 19 N. Yedala, A. K. Raghu, N. S. Kaisare, Combust. Flame 2019, 206, 441–450. DOI: https://doi.org/10.1016/j.combustflame.2019.05.022
- 20 M.-C. Lu, C.-C. Wang, IEEE Trans. Adv. Packag. 2006, 29 (1), 30–38. DOI: https://doi.org/10.1109/TCAPT.2005.850539
- 21 J. Dong, X. Xu, B. Xu, Appl. Therm. Eng. 2017, 124, 286–293. DOI: https://doi.org/10.1016/j.applthermaleng.2017.06.030
- 22
H. Sigloch, Technische Fluidmechanik, 10th ed., Springer Vieweg, Berlin
2017.
10.1007/978-3-662-54467-9 Google Scholar
- 23
Simulationen mit NX / Simcenter 3D: Kinematik, FEM, CFD, EM und Datenmanagement. Mit zahlreichen Beispielen für NX 9 (Eds: R. Anderl, P. Binde), Carl Hanser Verlag, München
2014.
10.3139/9783446439528 Google Scholar
- 24
K. Ghaib, Einführung in die numerische Strömungsmechanik, 1st ed., Springer Vieweg, Wiesbaden
2019.
10.1007/978-3-658-26923-4 Google Scholar
- 25http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf (Accessed on October 20, 2019)
- 26https://www.thyssenkrupp-materials.co.uk/stainless-steel-314-14841.html (Accessed on October 20, 2019)
- 27
J. Hagen, Chemiereaktoren, 1st ed., Wiley, Weinheim
2004.
10.1002/352760359X Google Scholar
- 28 R. M. Kumaran, G. Kumaraguruparan, T. Sornakumar, Appl. Therm. Eng. 2013, 58, 205–216. DOI: https://doi.org/10.1016/j.applthermaleng.2013.04.026
- 29 P. J. Lunde, Ind. Eng. Chem. Process. Des. Dev. 1974, 13 (3), 226–233. DOI: https://doi.org/10.1021/i260051a007
- 30 Y. L. Kao, P. H. Lee, Y. T. Tseng, I. L. Chien, J. D. Ward, J. Taiwan Inst. Chem. Eng. 2004, 45, 2346–2357. DOI: https://doi.org/10.1016/j.jtice.2014.06.024
- 31 F. Kosaka, T. Yamaguchi, Y. Ando, T. Mochizuki, H. Takagi, K. Matsuoka, Y. Fujishiro, K. Kuramoto, Int. J. Hydrogen Energy 2020, 45 (23), 12911–12920. DOI: https://doi.org/10.1016/j.ijhydene.2020.02.221
- 32 M. Frey, D. Édouard, A. C. Roger, C. R. Chim. 2015, 18, 283–292. DOI: https://doi.org/10.1016/j.crci.2015.01.002
- 33 K. P. Brooks, J. Hu, H. Zhu, R. J. Kee, Chem. Eng. Sci. 2007, 62 (4), 1161–1170. DOI: https://doi.org/10.1016/j.ces.2006.11.020
- 34 M. Bailera, P. Lisbona, L. M. Romeo, S. Espatolero, Renewable Sustainable. Energy Rev. 2017, 69, 292–312. DOI: https://doi.org/10.1016/j.rser.2016.11.130
- 35 P. A. U. Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P. Bazin, S. Thomas, A. C. Roger, Catal. Today 2013, 215, 201–207. DOI: https://doi.org/10.1016/j.cattod.2013.02.019
- 36 A. Acrivos, B. D. Babcock, R. L. Pigford, Chem. Eng. Sci. 1959, 10 (1–2), 112–124. DOI: https://doi.org/10.1016/0009-2509(59)80030-0
- 37 E. Truckenbrodt, Fluidmechanik; Band 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide, Springer, Berlin 2008.
- 38 Dubbel Taschenbuch für den Maschinenbau, 23rd ed. (Eds: K. H. Grote, J. Feldhusen), Springer, Heidelberg 2011.
- 39 A. Tran, A. Aguirre, H. Durand, M. Crose, P. D. Christofides, Chem. Eng. Sci. 2017, 171, 576–598. DOI: https://doi.org/10.1016/j.ces.2017.06.001