Efficient Removal of Ammonia by Hierarchically Porous Carbons from a CO2 Capture Process
Jeong Ho Choi
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Search for more papers by this authorJong Tak Jang
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorSoung Hee Yun
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorWon Hee Jo
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Search for more papers by this authorSeong Seon Lim
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Search for more papers by this authorJoung Ho Park
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorIl Soo Chun
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorCorresponding Author
Jung-Hyun Lee
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Correspondence: Jung-Hyun Lee ([email protected]), Department of Chemical & Biological Engineering, Korea University, 145 Anam-dong, Seongbuk-gu, Seoul 02841, Korea; Yeo Il Yoon ([email protected]) Greenhouse Gas Research Laboratory, Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.Search for more papers by this authorCorresponding Author
Yeo Il Yoon
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Correspondence: Jung-Hyun Lee ([email protected]), Department of Chemical & Biological Engineering, Korea University, 145 Anam-dong, Seongbuk-gu, Seoul 02841, Korea; Yeo Il Yoon ([email protected]) Greenhouse Gas Research Laboratory, Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.Search for more papers by this authorJeong Ho Choi
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Search for more papers by this authorJong Tak Jang
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorSoung Hee Yun
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorWon Hee Jo
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Search for more papers by this authorSeong Seon Lim
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Search for more papers by this authorJoung Ho Park
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorIl Soo Chun
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Search for more papers by this authorCorresponding Author
Jung-Hyun Lee
Korea University, Department of Chemical & Biological Engineering, 145 Anam-dong, Seongbuk-gu, 02841 Seoul, Korea
Correspondence: Jung-Hyun Lee ([email protected]), Department of Chemical & Biological Engineering, Korea University, 145 Anam-dong, Seongbuk-gu, Seoul 02841, Korea; Yeo Il Yoon ([email protected]) Greenhouse Gas Research Laboratory, Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.Search for more papers by this authorCorresponding Author
Yeo Il Yoon
Korea Institute of Energy Research, Greenhouse Gas Research Laboratory, Climate Change Research Division, 152 Gajeong-ro, Yuseong-gu, 34129 Daejeon, Korea
Correspondence: Jung-Hyun Lee ([email protected]), Department of Chemical & Biological Engineering, Korea University, 145 Anam-dong, Seongbuk-gu, Seoul 02841, Korea; Yeo Il Yoon ([email protected]) Greenhouse Gas Research Laboratory, Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.Search for more papers by this authorAbstract
The amine-based post-combustion carbon capture process is one of the most efficient methods for treating large-scale CO2, but it produces hazardous products due to chemical transition and degradation of the absorbents. In this study, carbon-based materials were used as adsorbents for the removal of NH3, and their adsorption capacities, adsorption rates, and stabilities were examined by comparing commercial activated carbon (AC) with hierarchically porous carbon (HPC). HPC-Step4 possessed a higher number of total acid sites, resulting in higher NH3 adsorption compared to AC. Despite the similar porosity, HPC-Step4 exhibited a higher adsorption rate constant and the improved kinetics was attributed to its increased portion of mesopores, enhancing the diffusion rate of the adsorbate. Furthermore, HPC-Step4 exhibited better reaction stability than AC.
Supporting Information
Filename | Description |
---|---|
ceat202000104-sup-0001-misc_information.pdf891.8 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.-M. Amann, C. Bouallou, Appl. Therm. Eng. 2010, 30, 53–62.
- 2 T. A. Adams, L. Hoseinzade, P. B. Madabhushi, I. J. Okeke, Processes 2017, 5, 1–37.
- 3 R. T. J. Porter, M. Fairweather, C. Kolster, N. M. Dowell, N. Shah, R. M. Woolley, Int. J. Greenhouse Gas Control 2017, 57, 185–195.
- 4 S. Choi, J. H. Drese, P. M. Eisenberger, C. W. Jones, Environ. Sci. Technol. 2011, 45, 2420–2427.
- 5 F. Vega, M. Cano, S. Camino, L. M. G. Fernández, E. Portillo, B. Navarrete, Carbon dioxide chemistry, Capture and oil recovery, IntechOpen, London 2016, Ch. 8, 142–163.
- 6 G. T. Rochelle, Science 2009, 325, 1652–1654.
- 7 S. O. Gardarsdottir, E. De Lena, M. Romano, S. Roussanaly, M. Voldsund, J.-F. Pérez-Calvo, D. Berstad, C. Fu, R. Anantharaman, D. Sutter, M. Gazzani, M. Mazzotti, G. Cinti, Energies 2019, 12, 542–561.
- 8 J. R. Scherffius, S. Reddy, J. P. Klumpyan, P. E. A. Armpriester, Energy Procedia 2013, 37, 6553–6561.
- 9 B. Jacobs, W. Srisang, S. Giannaris, C. Bruce, D. Janowczyk, 14th Greenhouse Gas Control Technologies Conf. Melbourne, October 2018.
- 10 Q. Li, J. Ma, X. Li, L. Xu, Z. Niu, X. Lu, Energy Procedia 2018, 154, 112–117.
- 11 T. Hirata, S. Kishimoto, M. Inui, T. Tsujiuchi, D. Shimada, S. Kawasaki, Mitsubishi Heavy Ind. Tech. Rev. 2018, 55, 32–37.
- 12 H. Shi, T. Supap, R. Idem, D. Gelowitz, C. Campbell, M. Ball, Environ. Sci. Technol. 2017, 51, 7723–7731.
- 13 M. Karl, N. Castell, D. Simpson, S. Solberg, J. Starrfelt, T. Svendby, S.-E. Walker, R. F. Wright, Atmos. Chem. Phys. 2014, 14, 8533–8557.
- 14 N. Dai, W. A. Mitch, Environ. Sci. Technol. 2015, 49, 8878–8886.
- 15 J. G. Thompson, X. Gao, S. Toma, K. Abad, S. Bhatnagar, J. Landon, K. Liu, Int. J. Greenhouse Gas Control 2019, 83, 83–90.
- 16 L. R. Widger, M. Combs, A. R. Lohe, C. A. Lippert, J. G. Thompson, K. Liu, Environ. Sci. Technol. 2017, 51, 10913–10922.
- 17
S. Pansang, J. Chungsiriporn, P. Kasikamphaiboon, Adv. Mater. Res.
2014, 844, 441–444.
10.4028/www.scientific.net/AMR.844.441 Google Scholar
- 18 C. Yeom, Y. Kim, Environ. Eng. Res. 2017, 22, 401–406.
- 19 A. K. Ashtari, A. M. S. Majd, G. L. Riskowski, S. Mukhtar, L. Zhao, Front. Environ. Sci. Eng. 2016, 10 (6), 3.
- 20 J. A. Joshi, J. A. Hogan, R. M. Cowan, P. F. Strom, M. S. Finstein, J. Air Waste Manage. Assoc. 2000, 50, 1647–1654.
- 21 S. Chi, G. T. Rochelle, Ind. Eng. Chem. Res. 2002, 41, 4178–4186.
- 22 A. Rieder, S. Dhingra, P. Khakharia, L. Zangrilli, B. Schallert, R. Irons, S. Unterberger, P. Os, E. Goetheer, Energy Procedia 2017, 114, 1195–1209.
- 23 T. Spietz, T. Chwoła, A. Kro'tki, A. Tatarczuk, L. Więcław-Solny, A. Wilk, Int. J. Environ. Sci. Technol. 2018, 15, 1085–1092.
- 24 T. Spietz, T. Chwoła, K. Jastrząb, S. Dobras, A. Wilk, Pol. J. Environ. Stud. 2019, 28, 1–9.
- 25 P. M. Mathias, S. Reddy, J. P. O'Connell, Int. J. Greenhouse Gas Control 2010, 4, 174–179.
- 26 N. Dai, W. A. Mitch, Environ. Sci. Technol. 2013, 47, 13175–13183.
- 27 P. Khakharia, H. M. Kvamsdal, E. F. da Silva, T. J. H. Vlugt, E. Goetheer, Int. J. Greenhouse Gas Control 2014, 28, 57–64.
- 28 J. A. G. Balanay, E. L. Floyd, C. T. Lungu, Ann. Occup. Hyg. 2015, 59, 481–490.
- 29 F. Xu, R. Cai, Q. Zeng, C. Zou, D. Wu, F. Li, X. Lu, Y. Liang, R. Fu, J. Mater. Chem. 2011, 21, 1970–1976.
- 30 S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309–319.
- 31 E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 1951, 73, 3155–3158.
- 32 R. Wang, S. Sang, D. Zhu, S. Liu, K. Yu, Energy Explor. Exploit. 2018, 36, 43–65.
- 33 M. Puccini, E. Stefanelli, A. L. Tasca, S. Vitolo, Chem. Eng. Trans. 2018, 67, 637–642.
- 34 J. Guo, W. S. Xu, Y. L. Chen, A. C. Lua, J. Colloid Interface Sci. 2005, 281, 285–290.
- 35 J. Chen, C. Li, Y. Zhou, C. Sun, T. Sun, ChemCatChem 2019, 11, 1943–1948.
- 36 M. Miyauchi, T. Ohba, Adsorption 2019, 25, 87–94.
- 37 W. J. Weber, J. C. Morris, ASCE J. Sanit. Eng. Div. 1963, 89, 31–60.
- 38 P. S. Kumar, R. Gayathri, J. Eng. Sci. Technol. 2009, 4, 381–399.
- 39 F. E. Soetaredjo, A. Kurniawan, L. K. Ong, D. R. Widagdyo, S. Ismadji, RSC Advances 2014, 95, 52856–52870.
- 40 S. H. Park, S. McCain, Z. R. Tian, S. L. Suib, C. Karwacki, Chem Mater. 1997, 9, 176–183.
- 41 J. Zawadzki, Carbon 1980, 18, 281–285.
- 42 S. S. Balaji, M. Sathish, RSC Advances 2014, 4, 52256–52262.
- 43 M. K. Trivedi, A. Branton, D. Trivedi, H. Shettigar, K. Bairwa, S. Jana, Nat Prod Chem Res. 2015, 3,
- 44 M-Y. Li, S-C. Cheng, D. Li, S-N. Wang, A-M. Huang, S-Q. Sun, Chinese Chemical Letters 2015, 26, 221–225.
- 45 M. S. Solum, R. J. Pugmire, M. Jagtoyen, F. Derbyshire, Carbon 1995, 33, 1249–1254.
- 46 Z. Zhang, T. Imae, Journal of Colloid and Interface Science 2001, 233, 99–106.