Structural Effects of HZSM-5 Zeolite on Methanol-to-Propylene Reaction
Shahira Islamdoost Jami
Ferdowsi University of Mashhad, Department of Chemistry, Faculty of Science, 9177948974 Mashhad, Iran
Search for more papers by this authorCorresponding Author
Ali Nakhaei Pour
Ferdowsi University of Mashhad, Department of Chemistry, Faculty of Science, 9177948974 Mashhad, Iran
Correspondence: Ali Nakhaei Pour ([email protected]), Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.Search for more papers by this authorAli Mohammadi
Ferdowsi University of Mashhad, Department of Chemistry, Faculty of Science, 9177948974 Mashhad, Iran
Search for more papers by this authorSeyed Mehdi Kamali Shahri
Pennsylvania State University, Department of Chemical Engineering, State College, 16801 Pennsylvania, USA
Search for more papers by this authorShahira Islamdoost Jami
Ferdowsi University of Mashhad, Department of Chemistry, Faculty of Science, 9177948974 Mashhad, Iran
Search for more papers by this authorCorresponding Author
Ali Nakhaei Pour
Ferdowsi University of Mashhad, Department of Chemistry, Faculty of Science, 9177948974 Mashhad, Iran
Correspondence: Ali Nakhaei Pour ([email protected]), Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.Search for more papers by this authorAli Mohammadi
Ferdowsi University of Mashhad, Department of Chemistry, Faculty of Science, 9177948974 Mashhad, Iran
Search for more papers by this authorSeyed Mehdi Kamali Shahri
Pennsylvania State University, Department of Chemical Engineering, State College, 16801 Pennsylvania, USA
Search for more papers by this authorAbstract
ZSM-5 zeolite was synthesized using n-butylamine as a template under hydrothermal conditions. The morphology of the prepared zeolites was changed with the initial gel composition. The influences of OH−/template and H2O/template ratios on the morphology, mesoporosity, acid properties, and crystal size of the synthesized zeolites were evaluated, also the structural effects of the prepared zeolites on the catalytic performances of the methanol-to-propylene process. Increasing the external surface area and mesopore volume of the catalysts improved the propylene selectivity. A direct relationship between the deactivation of catalysts and their acidic properties was found. The results were derived from laboratory data and need to be re-examined on a larger scale to ensure their accuracy on an industrial scale.
References
- 1 D. Lithner, I. Nordensvan, G. Dave, Environ. Sci. Pollut. Res. Int. 2012, 19 (5), 1763–1772. DOI: https://doi.org/10.1007/s11356-011-0663-5
- 2 X. Zhu, S. Liu, Y. Song, S. Xie, L. Xu, Appl. Catal., A 2005, 290 (1–2), 191–199. DOI: https://doi.org/10.1016/j.apcata.2005.05.028
- 3 A. Corma, F. Melo, L. Sauvanaud, F. Ortega, Catal. Today 2005, 107–108, 699–706. DOI: https://doi.org/10.1016/j.cattod.2005.07.109
- 4 M. Rostamizadeh, A. Taeb, J. Ind. Eng. Chem. 2015, 27, 297–306. DOI: https://doi.org/10.1016/j.jiec.2015.01.004
- 5 M. Rostamizadeh, F. Yaripour, Fuel 2016, 181, 537–546. DOI: https://doi.org/10.1016/j.fuel.2016.05.019
- 6 A. Nakhaei Pour, M. R. Housaindokht, J. Nat. Gas Sci. Eng. 2013, 14, 49–54. DOI: https://doi.org/10.1016/j.jngse.2013.05.004
- 7 A. Nakhaei Pour, M. R. Housaindokht, J. Nat. Gas Sci. Eng. 2013, 14, 29–33. DOI: https://doi.org/10.1016/j.jngse.2013.04.004
- 8 A. Nakhaei Pour, Y. Zamani, A. Tavasoli, S. M. K. Shahri, S. A. Taheri, Fuel 2008, 87 (10–11), 2004–2012. DOI: https://doi.org/10.1016/j.fuel.2007.10.014
- 9
A. Nakhaei Pour, S. M. K. Shahri, Y. Zamani, M. Irani, S. Tehrani, J. Nat. Gas Chem.
2008, 17 (3), 242–248. DOI: https://doi.org/10.1016/S1003-9953(08)60058-4
10.1016/S1003-9953(08)60058-4 Google Scholar
- 10 D. Rojo-Gama, L. Mentel, G. N. Kalantzopoulos, D. K. Pappas, I. Dovgaliuk, U. Olsbye, K. P. Lillerud, P. Beato, L. F. Lundegaard, D. S. Wragg, J. Phys. Chem. Lett. 2018, 9 (6), 1324–1328. DOI: https://doi.org/10.1021/acs.jpclett.8b00094
- 11 M. Boltz, P. Losch, B. Louis, Adv. Chem. Lett. 2013, 1 (3), 247–256. DOI: https://doi.org/10.1166/acl.2013.1032
- 12 H. Li, Y. Wang, C. Fan, C. Sun, X. Wang, C. Wang, X. Zhang, S. Wang, Appl. Catal., A 2018, 551, 34–48. DOI: https://doi.org/10.1016/j.apcata.2017.12.007
- 13 F. Gorzin, J. T. Darian, F. Yaripour, S. M. Mousavi, J. Porous Mater. 2019, 26, 1407–1425. DOI: https://doi.org/10.1007/s10934-019-00740-y
- 14 H. Guo, T. Ge, J. Lv, C. Du, J. Zhou, Z. Liu, Z. Hua, Eur. J. Inorg. Chem. 2019, 2019 (1), 51–58. DOI: https://doi.org/10.1002/ejic.201800926
- 15 J. Li, M. Liu, X. Guo, C. Dai, C. Song, J. Energy Chem. 2018, 27 (4), 1225–1230. DOI: https://doi.org/10.1016/j.jechem.2017.08.018
- 16 H. Chen, Y. Wang, F. Meng, H. Li, S. Wang, C. Sun, S. Wang, X. Wang, RSC Adv. 2016, 6, 76642–76651. DOI: https://doi.org/10.1039/C6RA14753D
- 17 Z. Wu, K. Zhao, Y. Zhang, T. Pan, S. Ge, Y. Ju, T. Li, T. Dou, Ind. Eng. Chem. Res. 2019, 58 (25), 10737–10749. DOI: https://doi.org/10.1021/acs.iecr.9b00502
- 18 A. Xing, N. Zhang, D. Yuan, H. Liu, Y. Sang, P. Miao, Q. Sun, M. Luo, Ind. Eng. Chem. Res. 2019, 58 (28), 12506–12515. DOI: https://doi.org/10.1021/acs.iecr.9b00325
- 19 C. D. Chang, A. T. Bell, Catal. Lett. 1991, 8 (5), 305–316. DOI: https://doi.org/10.1007/BF00764192
- 20 V. P. Valtchev, K. N. Bozhilov, J. Am. Chem. Soc. 2005, 127 (46), 16171–16177. DOI: https://doi.org/10.1021/ja0546267
- 21 T. Li, F. Krumeich, J. A. Van Bokhoven, Cryst. Growth Des. 2019, 19 (5), 2548–2551. DOI: https://doi.org/10.1021/acs.cgd.9b00304
- 22 S. Mintova, V. Valtchev, E. Vultcheva, S. Veleva, Zeolites 1992, 12 (2), 210–215. DOI: https://doi.org/10.1016/0144-2449(92)90086-5
- 23 B. Sun, Y. Kang, Q. Shi, M. Arowo, Y. Luo, G. Chu, H. Zou, Can. J. Chem. Eng. 2019, 97 (12), 3063–3073. DOI: https://doi.org/10.1002/cjce.23593
- 24 S. Soltanali, R. Halladj, A. Rashidi, M. Bazmi, Adv. Powder Technol. 2014, 25 (6), 1767–1771. DOI: https://doi.org/10.1016/j.apt.2014.07.004
- 25 C. Gittleman, A. Bell, C. Radke, Microporous Mesoporous Mater. 1994, 2 (2), 145–158. DOI: https://doi.org/10.1016/0927-6513(93)E0047-K
- 26 S. Sang, F. Chang, Z. Liu, C. He, Y. He, L. Xu, Catal. Today 2004, 93–95, 729–734. DOI: https://doi.org/10.1016/j.cattod.2004.06.091
- 27 M. Behrooz, M. H. Peyrovi, A. N. Pour, React. Kinet. Catal. Lett. 2001, 73 (1), 127–133. DOI: https://doi.org/10.1023/A:1013993309356
- 28 A. Nakhaei Pour, M. Housaindokht, Catal. Lett. 2013, 143 (12), 1328–1338. DOI: https://doi.org/10.1007/s10562-013-1070-y
- 29 A. Nakhaei Pour, M. R. Housaindokht, J. Nat. Gas Sci. Eng. 2013, 14, 204–210. DOI: https://doi.org/10.1016/j.jngse.2013.06.007
- 30 A. W. Burton, in Zeolite Characterization and Catalysis (Eds: A. W. Chester, E. G. Derouane), Springer, Berlin 2009.
- 31 Y. Li, J. Wang, J. Shi, X. Zhang, J. Lu, Z. Bao, D. Yan, Sep. Purif. Technol. 2003, 32 (1–3), 397–401. DOI: https://doi.org/10.1016/S1383-5866(03)00072-8
- 32 K. J. Chao, T. C. Tasi, M. S. Chen, I. Wang, J. Chem. Soc., Faraday Trans. 1 1981, 77, 547–555. DOI: https://doi.org/10.1039/F19817700547
- 33 J. Ahmadpour, M. Taghizadeh, C. R. Chim. 2015, 18 (8), 834–847. DOI: https://doi.org/10.1016/j.crci.2015.05.002
- 34 S. Abelló, J. Pérez-Ramírez, Phys. Chem. Chem. Phys. 2009, 11 (16), 2959–2963. DOI: https://doi.org/10.1039/B819543A
- 35 H. Chen, W. Shang, C. Yang, B. Liu, C. Dai, J. Zhang, Q. Hao, M. Sun, X. Ma, Ind. Eng. Chem. Res. 2019, 58 (4), 1580–1589. DOI: https://doi.org/10.1021/acs.iecr.8b05472
- 36 J. Li, M. Liu, S. Li, X. Guo, C. Song, Ind. Eng. Chem. Res. 2019, 58 (5), 1896–1905. DOI: https://doi.org/10.1021/acs.iecr.8b03969
- 37 Y. Zhang, M. Li, E. Xing, Y. Luo, X. Shu, Catal. Commun. 2019, 119, 67–70. DOI: https://doi.org/10.1016/j.catcom.2018.10.009
- 38 J. Pérez-Ramírez, D. Verboekend, A. Bonilla, S. Abelló, Adv. Funct. Mater. 2009, 19 (24), 3972–3979. DOI: https://doi.org/10.1002/adfm.200901394
- 39 P. J. Kunkeler, D. Moeskops, H. van Bekkum, Microporous Mesoporous Mater. 1997, 11 (5–6), 313–323. DOI: https://doi.org/10.1016/S0927-6513(97)00053-9
- 40 K. Barbera, F. Bonino, S. Bordiga, T. V. Janssens, P. Beato, J. Catal. 2011, 280 (2), 196–205. DOI: https://doi.org/10.1016/j.jcat.2011.03.016
- 41 I. M. Dahl, S. Kolboe, J. Catal. 1996, 161 (1), 304–309. DOI: https://doi.org/10.1006/jcat.1996.0188
- 42 R. Khare, A. Bhan, J. Catal. 2015, 329, 218–228. DOI: https://doi.org/10.1016/j.jcat.2015.05.012
- 43 S. Askari, R. Halladj, M. Sohrabi, Microporous Mesoporous Mater. 2012, 163, 334–342. DOI: https://doi.org/10.1016/j.micromeso.2012.07.041
- 44 J. Kim, M. Choi, R. Ryoo, J. Catal. 2010, 269 (1), 219–228. DOI: https://doi.org/10.1016/j.jcat.2009.11.009
- 45 J. Ahmadpour, M. Taghizadeh, J. Nat. Gas Sci. Eng. 2015, 23, 184–194. DOI: https://doi.org/10.1016/j.jngse.2015.01.035
- 46 J. Zhang, L. Xu, Y. Zhang, Z. Huang, X. Zhang, X. Zhang, Y. Yuan, L. Xu, J. Catal. 2018, 368, 248–260. DOI: https://doi.org/10.1016/j.jcat.2018.10.015
- 47 S. Müller, Y. Liu, F. M. Kirchberger, M. Tonigold, M. Sanchez-Sanchez, J. A. Lercher, J. Am. Chem. Soc. 2016, 138 (49), 15994–16003. DOI: https://doi.org/10.1021/jacs.6b09605