Solid Solubilities of Sulfonamides and Use of Rapid Expansion of Supercritical Solutions for Microparticle Production
Tsung-Mao Yang
National Taipei University of Technology, Department of Chemical Engineering and Biotechnology, Taipei, Taiwan
National Defense University, Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan
Search for more papers by this authorJin-Shuh Li
National Defense University, Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan
Search for more papers by this authorTsao-Fa Yeh
National Defense University, Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan
Search for more papers by this authorCorresponding Author
Chie-Shaan Su
National Taipei University of Technology, Department of Chemical Engineering and Biotechnology, Taipei, Taiwan
Correspondence: Chie-Shaan Su ([email protected]), Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.Search for more papers by this authorTsung-Mao Yang
National Taipei University of Technology, Department of Chemical Engineering and Biotechnology, Taipei, Taiwan
National Defense University, Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan
Search for more papers by this authorJin-Shuh Li
National Defense University, Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan
Search for more papers by this authorTsao-Fa Yeh
National Defense University, Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan
Search for more papers by this authorCorresponding Author
Chie-Shaan Su
National Taipei University of Technology, Department of Chemical Engineering and Biotechnology, Taipei, Taiwan
Correspondence: Chie-Shaan Su ([email protected]), Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.Search for more papers by this authorAbstract
The solubility of solid active pharmaceutical ingredients in supercritical fluids is a major thermodynamic criterion for selection and screening of microparticle generation processes. To develop an efficient method for solubility prediction, a solution model was adopted to establish the correlations of the solid solubilities of six sulfonamides in supercritical CO2. The model was capable of determining solubility correlations. Accordingly, it was attempted to simplify and generalize the model, yielding a predictive solution model, which provided order-consistent solubility predictions. A case study for model extrapolation was conducted. After understanding the mechanisms underlying the solubility of sulfonamides, the rapid expansion of supercritical solutions (RESS) process was applied to produce microparticles of p-toluenesulfonamide, an anticancer drug. The effects of RESS process parameters were investigated.
References
- 1 Ž. Knez, E. Markočič, M. Leitgeb, M. Primožič, M. Kenz Hrnčič, M. Škerget, Energy 2014, 77, 235–243. DOI: https://doi.org/10.1016/j.energy.2014.07.044
- 2 J. Hu, W. Deng, J. Cleaner Prod. 2016, 113, 931–946. DOI: https://doi.org/10.1016/j.jclepro.2015.10.104
- 3 E. Kiran, J. Supercrit. Fluids 2016, 110, 126–153. DOI: https://doi.org/10.1016/j.supflu.2015.11.011
- 4 R. K. Kankala, Y. S. Zhang, S.-B. Wang, C.-H. Lee, A.-Z. Chen, Adv. Healthcare Mater. 2017, 6, 1700433. DOI: https://doi.org/10.1002/adhm.201700433
- 5 N. Esfandiari, J. Supercrit. Fluids 2015, 100, 129–141. DOI: https://doi.org/10.1016/j.supflu.2014.12.028
- 6 E. Badens, Y. Masmoudi, A. Mouahid, C. Crampon, J. Supercrit. Fluids 2018, 134, 274–283. DOI: https://doi.org/10.1016/j.supflu.2017.12.038
- 7 C. H. Fang, P. H. Chen, Y. P. Chen, M. Tang, Chem. Eng. Technol., in press. DOI: https://doi.org/10.1002/ceat.201900432
- 8 J. Zhang, Q. Wang, Z. Zhu, H. Qian, F. Jiang, Z. Wang, W. Liu, D. Huang, Chem. Eng. Technol. 2019, 42, 388–396. DOI: https://doi.org/10.1002/ceat.201800328
- 9 M. C. Paisana, K. C. Müllers, M. A. Wahl, J. F. Pinto, J. Supercrit. Fluids 2016, 109, 124–133. DOI: https://doi.org/10.1016/j.supflu.2015.11.012
- 10 M. Türk, D. Bolten, J. Supercrit. Fluids 2016, 116, 239–250. DOI: https://doi.org/10.1016/j.supflu.2016.06.001
- 11 B. Q. Chen, R. K. Kankala, S. B. Wang, A. Z. Chen, J. Supercrit. Fluids 2018, 133, 486–493. DOI: https://doi.org/10.1016/j.supflu.2017.11.016
- 12 A. Montes, R. Merino, D. M. De los Santos, C. Pereyra, E. J. Martínez de la Ossa, J. CO2 Util. 2017, 21, 169–176. DOI: https://doi.org/10.1016/j.jcou.2017.07.009
- 13 G. E. Oliveira, J. F. Pinto, AAPS PharmSciTech 2017, 18, 2792–2807. DOI: https://doi.org/10.1208/s12249-017-0760-y
- 14 G. Sodeifian, S. A. Sajadian, J. Supercrit. Fluids 2018, 133, 239–252. DOI: https://doi.org/10.1016/j.supflu.2017.10.015
- 15 G. Sodeifian, N. S. Ardestani, S. A. Sajadian, H. S. Panah, Fluid Phase Equilib. 2019, 483, 122–143. DOI: https://doi.org/10.1016/j.fluid.2018.11.006
- 16 J. L. Ciou, C. S. Su, J. Supercrit. Fluids 2016, 107, 753–759. DOI: https://doi.org/10.1016/j.supflu.2015.08.005
- 17 Ž. Knez, D. Cör, M. Knez Hrnčič, J. Chem. Eng. Data 2018, 63, 860–884. DOI: https://doi.org/10.1021/acs.jced.7b00778
- 18 M. Škerget, Ž. Knez, M. Knez Hrnčič, J. Chem. Eng. Data 2011, 56, 694–719. DOI: https://doi.org/10.1021/je1011373
- 19 D. L. Sparks, R. Hernandez, L. A. Estevez, Chem. Eng. Sci. 2008, 63, 4292–4301. DOI: https://doi.org/10.1016/j.ces.2008.05.031
- 20 C. S. Su, Fluid Phase Equilib. 2014, 361, 266–272. DOI: https://doi.org/10.1016/j.fluid.2013.11.007
- 21 C. S. Su, J. Supercrit. Fluids 2013, 81, 79–85. DOI: https://doi.org/10.1016/j.supflu.2013.05.001
- 22 C. Y. Huang, L. S. Lee, C. S. Su, J. Taiwan Inst. Chem. Eng. 2013, 44, 349–358. DOI: https://doi.org/10.1016/j.jtice.2012.12.004
- 23 J. He, W. Ying, H. Yang, X. Xu, W. Shao, Y. Guan, M. Jiang, Y. Wu, B. Zhong, D. Wang, S. Tucker, N. Zhong, Anti-Cancer Drugs 2009, 20, 838–844. DOI: https://doi.org/10.1097/CAD.0b013e32832fe48f
- 24 Y. Gao, Y. Gao, W. Guan, L. Huang, X. Xu, C. Zhang, X. Chen, Y. Wu, G. Zeng, N. Zhong, J. Thorac. Dis. 2013, 5, 472–483. DOI: https://doi.org/10.3978/j.issn.2072-1439.2013.08.28
- 25 J. L. Hsu, W. J. Leu, L. C. Hsu, S. P. Liu, N. S. Zhong, J. H. Guh, Front. Pharmacol. 2018, 13, 1223. DOI: https://doi.org/10.3389/fphar.2018.01223
- 26 J. Jin, Y. Wang, Z. Zhang, H. Liu, Thermochim. Acta 2012, 527, 165–171. DOI: https://doi.org/10.1016/j.tca.2011.10.023
- 27 J. W. Hampson, R. J. Maxwell, S. Li, R. J. Shadwell, J. Chem. Eng. Data 1999, 44, 1222–1225. DOI: https://doi.org/10.1021/je990075m
- 28 J. Li, J. Jin, Z. Zhang, X. Pei, J. Supercrit. Fluids 2010, 52, 11–17. DOI: https://doi.org/10.1016/j.supflu.2009.11.011
- 29 J. Li, J. Jin, Z. Zhang, X. Pei, J. Chem. Eng. Data 2009, 54, 1142–1146. DOI: https://doi.org/10.1021/je8008842
- 30 Y. Iwai, Y. Koga, H. Maruyama, Y. Arai, J. Chem. Eng. Data 1993, 38, 506–508. DOI: https://doi.org/10.1021/je00012a005
- 31 A. Jain, G. Yang, S. H. Yalkowsky, Ind. Eng. Chem. Res. 2004, 43, 4376–4379. DOI: https://doi.org/10.1021/ie0497745
- 32 R. F. Fedors, Polym. Eng. Sci. 1974, 14, 147–154. DOI: https://doi.org/10.1002/pen.760140211
- 33 J. F. Ely, W. M. Haynes, B. C. Bain, J. Chem. Thermodyn. 1989, 21, 879–894. DOI: https://doi.org/10.1016/0021-9614(89)90036-0
- 34 M. D. Gordillo, C. Pereyra, E. J. Martínez de la Ossa, J. Supercrit. Fluids 2003, 27, 31–37. DOI: https://doi.org/10.1016/S0896-8446(02)00215-2
- 35 C. C. Tsai, H. Lin, M. J. Lee, J. Supercrit. Fluids 2014, 95, 17–23. DOI: https://doi.org/10.1016/j.supflu.2014.07.026