Activated-Carbon Nanofibers/Graphene Nanocomposites and Their Adsorption Performance Towards Carbon Dioxide
Faten Ermala Che Othman
Universiti Teknologi Malaysia, N29a, Advanced Membrane Technology Research Center (AMTEC), 81310 Johor Bahru, Johor, Malaysia
Universiti Teknologi Malaysia, School of Chemical Engineering, Faculty of Engineering, 81310 Johor Bahru, Johor, Malaysia
Search for more papers by this authorCorresponding Author
Norhaniza Yusof
Universiti Teknologi Malaysia, N29a, Advanced Membrane Technology Research Center (AMTEC), 81310 Johor Bahru, Johor, Malaysia
Universiti Teknologi Malaysia, School of Chemical Engineering, Faculty of Engineering, 81310 Johor Bahru, Johor, Malaysia
Correspondence: Norhaniza Yusof ([email protected]), N29a, Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.Search for more papers by this authorAhmad Fauzi Ismail
Universiti Teknologi Malaysia, N29a, Advanced Membrane Technology Research Center (AMTEC), 81310 Johor Bahru, Johor, Malaysia
Universiti Teknologi Malaysia, School of Chemical Engineering, Faculty of Engineering, 81310 Johor Bahru, Johor, Malaysia
Search for more papers by this authorFaten Ermala Che Othman
Universiti Teknologi Malaysia, N29a, Advanced Membrane Technology Research Center (AMTEC), 81310 Johor Bahru, Johor, Malaysia
Universiti Teknologi Malaysia, School of Chemical Engineering, Faculty of Engineering, 81310 Johor Bahru, Johor, Malaysia
Search for more papers by this authorCorresponding Author
Norhaniza Yusof
Universiti Teknologi Malaysia, N29a, Advanced Membrane Technology Research Center (AMTEC), 81310 Johor Bahru, Johor, Malaysia
Universiti Teknologi Malaysia, School of Chemical Engineering, Faculty of Engineering, 81310 Johor Bahru, Johor, Malaysia
Correspondence: Norhaniza Yusof ([email protected]), N29a, Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.Search for more papers by this authorAhmad Fauzi Ismail
Universiti Teknologi Malaysia, N29a, Advanced Membrane Technology Research Center (AMTEC), 81310 Johor Bahru, Johor, Malaysia
Universiti Teknologi Malaysia, School of Chemical Engineering, Faculty of Engineering, 81310 Johor Bahru, Johor, Malaysia
Search for more papers by this authorAbstract
Activated-carbon nanofibers (ACNFs) provide a relatively new, modified structure of carbon-based adsorbents that have the ability to adsorb carbon dioxide due to their high specific surface area, wide distribution of porous structures, and high volume of active sites. In this study, cost-effective agricultural waste-based graphene synthesized from rice husk ashes was used as additive to enhance the ACNF properties. ACNF/graphene (gACNF) is still a relatively unexplored adsorbent. The resultant gACNF exhibited better thermal stability properties, with higher yield, larger specific surface area, and higher micropore volume. These properties are the main factors contributing to their enhanced adsorption performance towards CO2.
References
- 1 Y. C. Chiang, R. S. Juang, J. Taiwan Inst. Chem. Eng. 2009, 71, 214.
- 2 S. H. Khalil, M. K. Aroua, W. M. A. W. Daud, Chem. Eng. J. 2012, 183, 15.
- 3 S. Chowdhury, R. Balasubramaniam, Ind. Eng. Chem. Res. 2016, 55 (29), 7906.
- 4 L. H. de Oliveira, J. G. Meneguin, M. V. Pereira, J. F. do Nascimento, P. A. Arroyo, Chem. Eng. Commun. 2019, 206 (11), 1533.
- 5 B. Guo, L. Chang, K. Xie, J. Nat. Gas Chem. 2006, 15 (3), 223.
- 6 J. Zhang, K. Jia, L. Lin, W. Zhao, H. T. Quang, L. Sun, T. Li, Z. Li, X. Liu, L. Zheng, R. Xue, J. Gao, Z. Luo, M. H. Rummeli, Q. Yuan, H. Peng, Z. Liu, Angew. Chem., Int. Ed. 2019, 58 (41), 14446.
- 7
F. E. C. Othman, N. Yusof, J. Jaafar, A. F. Ismail, H. Hasbullah, N. Abdullah, M. S. Ismail, IOP Conf. Ser.: Earth Environ. Sci.
2016, 36, 012006.
10.1088/1755-1315/36/1/012006 Google Scholar
- 8 M. Songolzadeh, M. Soleimani, M. T. Ravanchi, R. Songolzadeh, Sci. World J. 2014, 828131.
- 9 E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spörl, M. R. Buchmeiser, Angew. Chem., Int. Ed. 2014, 53 (21), 5262.
- 10 L. K. Shrestha, M. Thapa, R. G. Shrestha, S. Maji, R. R. Pradhananga, K. Ariga, C 2019, 5 (1), 10.
- 11 H. Muramatsu, Y. A. Kim, K. S. Yang, R. Cruz-Silva, I. Toda, T. Yamada, M. Terrones, M. Endo, T. Hayashi, H. Saitoh, Small 2014, 10 (14), 2766.
- 12 S. Ö. Gönen, M. E. Taygun, S. Küçükbayrak, Chem. Eng. Technol. 2015, 38 (5), 844.
- 13 B. Wang, Y. Wang, T. Yin, Q. Yu, Chem. Eng. Commun. 2010, 197 (10), 1315.
- 14 E. F. C. Chaúque, L. N. Dlamini, A. A. Adelodun, C. J. Greyling, J. C. Ngila, Appl. Surf. Sci. 2016, 369, 19.
- 15 R. Jain, H. G. Chae, S. Kumar, Compos. Sci. Technol. 2013, 88, 134.
- 16 A. F. Ismail, A. Mustafa, Mod. Appl. Sci. 2008, 2 (2), 131.
- 17 F. E. C. Othman, M. S. Ismail, N. Yusof, S. Samitsu, M. Z. Yusop, N. F. T. Arifin, N. H. Alias, J. Jaafar, F. Aziz, W. N. W. Salleh, A. F. Ismail, Carbon Lett., in press. DOI: https://doi.org/10.1007/s42823-020-00123-3
- 18 F. E. C. Othman, N. Yusof, H. Hasbullah, J. Jaafar, A. F. Ismail, N. Abdullah, N. A. H. M. Nordin, F. Aziz, W. N. W. Salleh, J. Ind. Eng. Chem. 2017, 51, 281.
- 19 H. Tavanai, R. Jalili, M. Morshed, Surf. Interface Anal. 2009, 41, 814.
- 20 A. H. Lui, J. T. Zheng, J. Colloid Interface Sci. 2001, 236, 369.
- 21 B. Wang, Z. Chen, J. Zhang, J. Cao, S. Wang, Q. Tian, M. Gao, Q. Xu, Colloids Surf., A 2014, 457, 318.
- 22 Q. Dong, G. Wang, H. Hu, J. Yang, B. Qian, Z. Ling, J. Qiu, J. Power Sources 2013, 243, 350.
- 23 J. Sirc, R. Hobzova, N. Kostina, M. Munzarova, M. Juklickova, M. Lhotka, S. Kubinova, A. Zajicova, J. Michalek, J. Nanomater. 2012, 1. 2012, 327369
- 24 V. Kuzmenko, N. Wang, M. Haque, O. Naboka, M. Flygare, K. Svensson, P. Gatenholm, J. Lie, P. Enoksson, RSC Adv. 2017, 7, 45968.
- 25 S. Y. Lee, S. J. Park, J. Solid State Chem. 2011, 184 (10), 2655.
- 26 A. A. Alghamdi, A. F. Alshahrani, N. H. Khdary, F. A. Alharthi, H. A. Alattas, S. F. Adil, Materials 2018, 11 (4), 578.
- 27 X. Wu, S. Mahalingam, A. Amir, H. Porwal, M. J. Reece, V. Naglieri, P. Colombo, M. Edirisinghe, ACS Omega 2016, 1, 202.
- 28 Z. Yan, A. R. Barron, in Physical Methods in Chemistry and Nano Science, Rice University, Houston, TX 2012.
- 29 I. Calizo, F. Miao, W. Bao, C. N. Lau, A. A. Balandin, Appl. Phys. Lett. 2007, 91, 201904.
- 30 Y. Liu, L. Z. Fan, L. Jiao, J. Mater. Chem. A 2017, 5, 1698.
- 31 S. Y. Lee, S. J. Park, Int. J. Hydrogen Energy 2010, 35 (13), 6757.
- 32 J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler, P. Pfeifer, Nanotechnology 2012, 23 (1), 015401.
- 33 D. A. Fonseca, H. R. Gutierrez, A. D. Lueking, Microporous Mesoporous Mater. 2008, 113 (1), 178.
- 34 N. Iqbal, X. Wang, A. A. Babar, J. Yu, B. Din, J. Colloid Interface Sci. 2016, 476, 87.
- 35 D. Nan, J. Liu, W. Ma, Chem. Eng. J. 2015, 276, 44.
- 36 J. Silvestre-Albero, A. Wahby, A. Sepúlveda-Escribano, M. Martínez-Escandell, K. Kaneko, F. Rodrígues-Reinoso, Chem. Commun. 2011, 47 (24), 6840.
- 37 A. Wahby, J. M. Ramos-Fernández, M. Martínez-Escandell, A. Sepúlveda-Escribano, J. Silvestre-Albero, F. Rodríguez-Reinoso, ChemSusChem 2010, 3 (8), 974.