Biohydrogen Production Through Dark Fermentation
Corresponding Author
Prakash K. Sarangi
Central Agricultural University, Directorate of Research, Imphal, Manipur, India
Correspondence: Prakash K. Sarangi ([email protected]), Directorate of Research, Central Agricultural University, Imphal, Manipur, India.Search for more papers by this authorSonil Nanda
University of Saskatchewan, Department of Chemical and Biological Engineering, Saskatoon, Saskatchewan, Canada
Search for more papers by this authorCorresponding Author
Prakash K. Sarangi
Central Agricultural University, Directorate of Research, Imphal, Manipur, India
Correspondence: Prakash K. Sarangi ([email protected]), Directorate of Research, Central Agricultural University, Imphal, Manipur, India.Search for more papers by this authorSonil Nanda
University of Saskatchewan, Department of Chemical and Biological Engineering, Saskatoon, Saskatchewan, Canada
Search for more papers by this authorAbstract
Waste organic biomass is regarded as the most suitable renewable source for conversion to produce biofuels and biochemicals. Owing to its high-energy potential and abundancy, lignocellulosic biomass can be utilized to produce alternative energy in the form of gaseous and liquid biofuels. Microbial conversion of waste biomass is the most successful technology for the generation of biohydrogen through dark fermentation. Different biological hydrogen production technologies along with process parameters are described in this review paper with the focus on dark fermentation. The production of biohydrogen from various substrates is summarized along with the integrated mode of dark fermentation and photofermentation. Hydrogen generation through biological water-gas shift reaction is also highlighted.
References
- 1
D. P. Minh, T. J. Siang, D. V. N. Vo, T. S. Phan, C. Ridart, A. Nzihou, D. Grouset, in Hydrogen Supply Chains: Design, Deployment and Operation (Ed: C. Azzaro-Pantel), Elsevier, London
2018, 111–166.
10.1016/B978-0-12-811197-0.00004-X Google Scholar
- 2 M. Yadav, K. Paritosh, N. Pareek, V. Vivekanand, J. Cleaner Prod. 2019, 213, 75–88.
- 3 B. Abdullah, S. A. F. S. Muhammad, Z. Shokravic, S. Ismail, K. A. Kassim, A. N. Mahmood, M. M. A. Aziz, Renewable Sustainable Energy Rev. 2019, 107, 37–50.
- 4 H. Balat, E. Kırtay, Int. J. Hydrogen Energy 2010, 35, 7416–7426.
- 5 A. Bauen et al., Bioenergy – A Sustainable and Reliable Energy Source: A Review of Status and Prospects, IEA Bioenergy, Rotorua 2009.
- 6
P. K. Sarangi, S. Nanda, in Recent Advancements in Biofuels and Bioenergy Utilization (Eds: P. K. Sarangi, S. Nanda, P. Mohanty), Springer Nature, Singapore
2018, 111–123.
10.1007/978-981-13-1307-3_5 Google Scholar
- 7 S. Nanda, R. Azargohar, A. K. Dalai, J. A. Kozinski, Renewable Sustainable Energy Rev. 2015, 50, 925–941.
- 8 S. Nanda, J. Mohammad, S. N. Reddy, J. A. Kozinski, A. K. Dalai, Biomass Convers. Biorefin. 2014, 4, 157–191.
- 9 S. Nanda, A. K. Dalai, I. Gökalp, J. A. Kozinski, Waste Manage. 2016, 52, 147–158.
- 10 S. Nanda, A. K. Dalai, J. A. Kozinski, Biomass Bioenergy 2016, 95, 378–387.
- 11 S. Nanda, J. Isen, A. K. Dalai, J. A. Kozinski, Energy Convers. Manage. 2016, 110, 296–306.
- 12 S. Nanda, M. Gong, H. N. Hunter, A. K. Dalai, I. Gökalp, J. A. Kozinski, Fuel Process. Technol. 2017, 168, 84–96.
- 13 S. Nanda, S. N. Reddy, D. V. N. Vo, B. N. Sahoo, J. A. Kozinski, Energy Sci. Eng. 2018, 6, 448–459.
- 14 S. Nanda, R. Rana, H. N. Hunter, Z. Fang, A. K. Dalai, J. A. Kozinski, Chem. Eng. Sci. 2019, 195, 935–945.
- 15 S. Nanda, R. Rana, Y. Zheng, J. A. Kozinski, A. K. Dalai, Sustainable Energy Fuels 2017, 1, 1232–1245.
- 16
S. Nanda, K. Li, N. Abatzoglou, A. K. Dalai, J. A. Kozinski, in Bioenergy Systems for the Future (Eds: F. Dalena, A. Basile, C. Rossi), Elsevier, Duxford
2017, 373–418.
10.1016/B978-0-08-101031-0.00011-9 Google Scholar
- 17 H. J. Alves, C. Bley Jr., R. R. Niklevicz, E. P. Frigo, M. S. Frigo, C. H. Coimbra-Araújo, Int. J. Hydrogen Energy 2013, 38, 5215–5225.
- 18 F. D. Faloye, E. B. G. Kana, S. Schmidt, Int. J. Hydrogen Energy 2014, 39, 5607–5616.
- 19 G. X. Dong, B. R. Wu, L. Zhu, J. Du, Trans. Nonferrous Met. Soc. China 2007, 17, S941–S944.
- 20 D. Das, T. N. Veziroglu, Int. J. Hydrogen Energy 2001, 26, 13–28.
- 21 M. Momirlan, T. N. Veziroglu, Renewable Sustainable Energy Rev. 2002, 6, 141–179.
- 22 S. N. Reddy, S. Nanda, A. K. Dalai, J. A. Kozinski, Int. J. Hydrogen Energy 2014, 39, 6912–6926.
- 23 J. A. Okolie, R. Rana, S. Nanda, A. K. Dalai, J. A. Kozinski, Sustainable Energy Fuels 2019, 3, 578–598.
- 24 S. Singh, R. Kumar, H. D. Setiabudi, S. Nanda, D. V. N. Vo, Appl. Catal., A 2018, 559, 57–74.
- 25 K. J. Wu, J. S. Chang, Process Biochem. 2007, 42, 279–284.
- 26 X. M. Guo, E. Trably, E. Latrille, H. Carrere, J. P. Steyer, Int. J. Hydrogen Energy 2010, 35, 10660–10673.
- 27 L. Magnusson, R. Islam, R. Sparling, D. Levin, N. Cicek, Int. J. Hydrogen Energy 2008, 33, 5398–5403.
- 28 P. Saraphirom, A. Reungsang, Int. J. Hydrogen Energy 2008, 4, 55–62.
- 29 C. C. Chen, Y. S. Chuang, C. Y. Lin, C. H. Lay, B. Sen, Int. J. Hydrogen Energy 2012, 37, 15540–15546.
- 30 H. Han, L. Wei, B. Liu, H. Yang, J. Shen, Int. J. Hydrogen Energy 2012, 37, 13200–13208.
- 31 P. Moodley, E. B. G. Kana, Int. J. Hydrogen Energy 2015, 40, 3859–3867.
- 32 S. Nanda, P. Mohanty, K. K. Pant, S. Naik, J. A. Kozinski, A. K. Dalai, Bioenergy Res. 2013, 6, 663–677.
- 33 S. Nanda, A. K. Dalai, J. A. Kozinski, Energy Sci. Eng. 2014, 2, 138–148.
- 34 A. Escapa, R. Mateos, E. J. J. Martínez, J. Blanes, Renewable Sustainable Energy Rev. 2016, 55, 942–956.
- 35 B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol. 2006, 40, 5181–5192.
- 36 A. S. Fedorov, A. A. Tsygankov, K. K. Rao, D. O. Hall, Biotechnol. Lett. 1998, 20, 1007–1009.
- 37 B. Sørensen, Hydrogen and Fuel Cells – Emerging Technologies and Applications, Elsevier, London 2005.
- 38 D. B. Levin, L. Pitt, M. Love, Int. J. Hydrogen Energy 2004, 29, 173–185.
- 39 K. Pakshirajan, J. Mal, Int. J. Hydrogen Energy 2013, 38, 16020–16028.
- 40 S. N. Parshina, J. Sipma, A. M. Henstra, A. J. Stams, Int. J. Microbiol. 2010, 319527.
- 41 J. Sipma, A. M. Henstra, S. N. Parshina, P. N. Lens, G. Lettinga, A. J. Stams, Crit. Rev. Biotechnol. 2006, 26, 41–65.
- 42 P. C. Munasinghe, S. K. Khanal, Bioresour. Technol. 2010, 101, 5013–5022.
- 43 Y. K. Oh, E. H. Seol, M. S. Kim, S. Park, Int. J. Hydrogen Energy 2004, 29, 1115–1121.
- 44 M. Ljunggren, K. Willquist, G. Zacchi, E. W. van Niel, Biotechnol. Biofuels 2011, 4, 31.
- 45 F. Pakpour, G. Najafpour, M. Tabatabaei, M. Tohidfar, H. Younesi, Bioprocess Biosyst. Eng. 2014, 37, 923–930.
- 46 K. Kumar, A. Sinharoy, K. Pakshirajan, J. Environ. Manage. 2018, 219, 294–303.
- 47 M. Z. Bundhoo, R. Mohee, Int. J. Hydrogen Energy 2016, 41, 6713–6133.
- 48 Y. Fan, C. Li, J. J. Lay, H. Hou, G. Zhang, Bioresour. Technol. 2004, 91, 189–193.
- 49 H. Fujikawa, A. Kai, S. Morozumi, Food Microbiol. 2004, 21, 501–509.
- 50 A. Melis, T. Happe, Plant Physiol. 2001, 127, 740–748.
- 51 A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie, P. N. L. Lens, G. Esposito, Appl. Energy 2015, 144, 73–95.
- 52 M. M. Amin, B. Bina, E. Taheri, A. Fatehizadeh, M. Ghasemian, Environ. Sci. Pollut. Res. Int. 2016, 23, 20915–20921.
- 53 M. M. Amin, B. Bina, E. Taheri, M. R. Zare, M. Ghasemian, S. W. van Ginkel, A. Fatehizadeh, Process Biochem. 2017, 61, 24–29.
- 54 A. Gadhe, S. S. Sonawane, M. N. Varma, Int. J. Hydrogen Energy 2014, 39, 10041–10050.
- 55 M. H. Hwang, N. J. Jang, S. H. Hyun, I. S. Kim, J. Biotechnol. 2004, 111, 297–309.
- 56 N. Ren, D. Xing, B. Rittmann, L. Zhao, T. Xie, X. Zhao, Environ. Microbiol. 2007, 9, 1112–1125.
- 57 G. Najafpour, H. Younesi, A. R. Mohamed, Int. J. Hydrogen Energy 2004, 29, 173–185.
- 58 R. P. Datar, R. M. Shenkman, B. G. Cateni, R. L. Huhnke, R. S. Lewis, Biotechnol. Bioeng. 2004, 86, 587–594.
- 59 T. A. Kotsopoulos, R. J. Zeng, I. Angelidaki, Biotechnol. Bioeng. 2006, 94, 296–302.
- 60 M. F. Temudo, R. Kleerebezem, M. van Loosdrecht, Biotechnol. Bioeng. 2007, 98, 69–79.
- 61 S. E. Hosseini, M. A. Wahid, Renewable Sustainable Energy Rev. 2016, 57, 850–866.
- 62 Y. Ueno, H. Fukui, M. Goto, Environ. Sci. Technol. 2007, 41, 1413–1439.
- 63 A. E. Mars, T. Veuskens, M. A. W. Budde, P. F. N. M. van Doeveren, S. J. Lips, R. R. Bakker, T. de Vrije, P. A. M. Claassen, Int. J. Hydrogen Energy 2010, 35, 7730–7737.
- 64 S. Pattra, S. Sangyoka, M. Boonmee, A. Reungsang, Int. J. Hydrogen Energy 2018, 33, 5256–5265.
- 65 M. Ferchichi, E. Crabbe, G. H. Gil, W. Hintz, A. Almadidy, J. Biotechnol. 2005, 120, 402–409.
- 66 D. B. Levin, R. Islam, N. Cicek, R. Sparling, Int. J. Hydrogen Energy 2006, 31, 1496–1503.
- 67 Q. Q. Tian, L. Liang, M. J. Zhu, Bioresour. Technol. 2015, 197, 422–428.
- 68 X. Y. Cheng, C. Z. Liu, Energy Fuels 2011, 25, 1714–1720.
- 69 C. Collet, N. Adler, J. P. Schwitzguebel, P. Peringer, Int. J. Hydrogen Energy 2004, 29, 1479–1485.
- 70 A. Geng, Y. He, C. Qian, X. Yan, Z. Zhou, Bioresour. Technol. 2010, 101, 4029–4033.
- 71 T. Chookaew, P. Prasertsan, Z. J. Ren, New Biotechnol. 2014, 31, 179–184.
- 72 Y. Ren, J. Wang, Z. Liu, Y. Ren, G. Li, Renewable Energy 2009, 34, 2774–2779.
- 73 S. E. Oh, P. Iyer, M. A. Bruns, B. E. Logan, Biotechnol. Bioeng. 2004, 87, 119–127.
- 74 H. Yokoi, R. Maki, J. Hirose, S. Hayashi, Biomass Bioenergy 2002, 22, 389–395.
- 75 F. Syahrial, S. T. H. Nomura, Int. J. Hydrogen Energy 2015, 40, 11399–11405.
- 76 A. T. W. M. Hendriks, G. Zeeman, Bioresour. Technol. 2009, 100, 10–18.
- 77 W. Han, D. Na, Y. Wen, J. Hong, Y. Feng, N. Qi, Bioresour. Technol. 2015, 180, 54–58.
- 78 M. Quéméneur, J. Hamelin, A. Barakat, J. P. Steyer, H. Carrère, E. Trably, Int. J. Hydrogen Energy 2012, 37, 3150–3159.
- 79 G. Cao, N. Ren, A. Wang, D. J. Lee, W. Guo, B. Liu, Y. Feng, A. Zhao, Int. J. Hydrogen Energy 2009, 34, 7182–7188.
- 80 T. A. D. Nguyen, K. R. Kim, M. S. Kim, S. J. Sim, Int. J. Hydrogen Energy 2010, 35, 13392–13398.
- 81 I. Ntaikou, H. N. Gavala, M. Kornaros, G. Lyberatos, Int. J. Hydrogen Energy 2008, 33, 1153–1163.
- 82 N. Ren, W. Guo, B. Liu, G. Cao, J. Ding, Curr. Opin. Biotechnol. 2011, 22, 365–370.
- 83 X. Gómez, C. Fernández, J. Fierro, M. E. Sánchez, A. Escapa, A. Morán, Bioresour. Technol. 2011, 102, 8621–8627.
- 84 P. K. Rai, S. P. Singh, R. K. Asthana, Bioresour. Technol. 2014, 152, 140–146.
- 85 H. Yang, B. Shi, H. Ma, L. Guo, Int. J. Hydrogen Energy 2015, 40, 12193–12200.
- 86 M. J. Barbosa, J. M. Rocha, J. Tramper, R. H. Wijffels, J. Biotechnol. 2001, 85, 25–33.
- 87 H. Han, B. Liu, H. Yang, J. Shen, Int. J. Hydrogen Energy 2012, 37, 12167–12174.
- 88
M. D. Redwood, M. Paterson-Beedle, L. E. Macaskie, Rev. Environ. Sci. Bio/Technol.
2008, 8, 149–185.
10.1007/s11157-008-9144-9 Google Scholar
- 89 B. F. Liu, N. Q. Ren, J. Tang, J. Ding, W. Z. Liu, J. F. Xu, G. L. Cao, W. Q. Guo, G. J. Xie, Int. J. Hydrogen Energy 2010, 35, 2858–2862.
- 90 B. F. Liu, G. J. Xie, R. Q. Wang, D. F. Xing, J. Ding, X. Zhou, H. Y. Ren, C. Ma, N. Q. Ren, Biotechnol. Biofuels 2015, 8, 8.
- 91 R. Chandra, G. Nikhil, S. Mohan, Int. J. Mol. Sci. 2015, 16, 9540–9556.
- 92 J. W. Van Groenestijn, J. H. O. Hazewinkel, M. Nienoord, P. J. T. Bussmann, Int. J. Hydrogen Energy 2002, 27, 1141–1147.
- 93 E. W. J. Van Niel, M. A. W. Budde, G. G. de Haas, F. J. van der Wal, P. A. M. Claasen, A. J. M. Stams, Int. J. Hydrogen Energy 2002, 27, 1391–1398.
- 94 L. Sahlstrom, Bioresour. Technol. 2003, 87, 161–166.
- 95 E. W. J. Van Niel, P. A. M. Claassen, A. J. M. Stams, Biotechnol. Bioeng. 2003, 81, 255–262.
- 96 P. C. Hallenbeck, Water Sci. Technol. 2005, 52, 21–29.
- 97 H. S. Shin, J. H. Youn, Biodegradation 2005, 16, 33–44.
- 98 L. M. Alzate-Gaviria, P. J. Sebastian, A. Pérez-Hernández, D. Eapen, Int. J. Hydrogen Energy 2007, 32, 3141–3146.
- 99 C. C. Chen, C. Y. Lin, J. S. Chang, Appl. Microbiol. Biotechnol. 2001, 57, 56–64.
- 100 I. S. Kim, M. H. Hwang, N. J. Jang, S. H. Hyun, S. T. Lee, Int. J. Hydrogen Energy 2004, 29, 1133–1140.
- 101 S. K. Han, H. S. Shin, Int. J. Hydrogen Energy 2004, 29, 569–577.
- 102 B. Mandal, K. Nath, D. Das, Biotechnol. Lett. 2006, 28, 831–835.
- 103 J. R. Bastidas-Oyanedel, Z. Mohd-Zaki, R. J. Zeng, N. Bernet, S. Pratt, J. P. Steyer, D. J. Batstone, Bioresour. Technol. 2012, 110, 503–509.
- 104 M. Chong, V. Sabaratnam, Y. Shirai, M. Ali, M. A. Hassan, Int. J. Hydrogen Energy 2009, 34, 3277–3287.
- 105 F. Monlau, Q. Aemig, E. Trably, J. Hamelin, J. P. Steyer, H. Carrere, Int. J. Hydrogen Energy 2013, 38, 12273–12282.
- 106 D. Fougere, S. Nanda, K. Clarke, J. A. Kozinski, K. Li, Biomass Bioenergy 2016, 91, 56–68.
- 107 F. Hu, A. Ragauskas, Bioenergy Res. 2012, 5, 1043–1066.
- 108 H. Zhu, M. Béland, Int. J. Hydrogen Energy 2006, 31, 1980–1988.
- 109 J. Wang, W. Wan, Int. J. Hydrogen Energy 2008, 33, 2934–2941.
- 110 S. O-Thong, P. Prasertsan, N. K. Birkeland, Bioresour. Technol. 2009, 100, 909–918.
- 111 I. Z. Boboescu, V. D. Gherman, I. Mirel, B. Pap, R. Tengölics, G. Rákhely, K. L. Kovácsc, É. Kondorosi, G. Marótia, Int. J. Hydrogen Energy 2014, 39, 1502–1510.
- 112 M. J. Taherzadeh, K. Karimi, Int. J. Mol. Sci. 2008, 9, 1621–1651.
- 113 W. Mussoline, E. Giovanni, A. Giordano, P. Lens, Crit. Rev. Environ. Sci. Technol. 2012, 43, 895–915.
- 114 Y. Zheng, J. Zhao, F. Xu, Y. Li, Prog. Energy Combust. Sci. 2014, 42, 35–53.
- 115 S. Zhu, Y. Wu, Z. Yu, J. Liao, Y. Zhang, Process Biochem. 2005, 40, 3082–3086.
- 116 P. Chairattanamanokorn, P. Penthamkeerati, A. Reungsang, Y. C. Lo, W. B. Lu, J. S. Chang, Int. J. Hydrogen Energy 2009, 34, 7612–7617.
- 117 C. Pan, S. Zhang, Y. Fan, H. Hou, Int. J. Hydrogen Energy 2010, 35, 2663–2669.
- 118 P. Kongjan, I. Angelidaki, Bioresour. Technol. 2010, 101, 7789–7796.
- 119 H. Argun, F. Kargi, I. Kapdan, Int. J. Hydrogen Energy 2008, 33, 7405–7412.
- 120 C. Y. Lin, C. H. Lay, Int. J. Hydrogen Energy 2004, 29, 41–45.
- 121 C. Lin, C. Lay, Int. J. Hydrogen Energy 2005, 30, 285–292.
- 122 C. Li, H. H. P. Fang, Crit. Rev. Environ. Sci. Technol. 2007, 37, 1–39.
- 123 L. Altaş, J. Hazard. Mater. 2009, 162, 1551–1556.
- 124 K. D. Grieger, A. Fjordbøge, N. B. Hartmann, E. Eriksson, P. L. Bjerg, A. Baun, J. Contam. Hydrol. 2010, 118, 165–183.
- 125 M. Taherdanak, H. Zilouei, K. Karimi, Int. J. Hydrogen Energy 2015, 40, 12956–12963.
- 126 S. K. Patel, V. C. Kalia, J. H. Choi, J. R. Haw, I. W. Kim, J. K. Lee, J. Microbiol. Biotechnol. 2014, 24, 639–647.
- 127 S. Hokkanen, A. Bhatnagar, M. Sillanpää, Water Res. 2016, 91, 156–173.
- 128Sustainable Development Goal 7: Targets, United Nations, New York 2018. https://sustainabledevelopment.un.org/sdg7
- 129 M. A. Z. Bundhoo, Int. J. Hydrogen Energy 2017, 42, 4040–4050.
- 130 J. Wang, Y. Yin, Int. J. Hydrogen Energy 2017, 42, 4804–4823.
- 131 N. H. M. Yasin, T. Mumtaz, M. A. Hassan, N. Abd Rahman, J. Environ. Manage. 2013, 130, 375–385.
- 132 N. M. C. Saady, Int. J. Hydrogen Energy 2013, 38, 13172–13191.
- 133 Y. M. Wong, T. Y. Wu, J. C. Juan, Renewable Sustainable Energy Rev. 2014, 34, 471–482.
- 134 G. Kumar, G. Zhen, P. Sivagurunathan, P. Bakonyi, N. Nemestóthy, K. Bélafi-Bakó, T. Kobayashi, K. Q. Xu, Biofuel Res. J. 2016, 3, 470–474.
- 135 S. E. Hosseini, M. A. Wahid, M. M. Jamil, A. A. M. Azli, M. F. Misbah, Int. J. Energy Res. 2015, 39, 1597–1615.
- 136 A. Dadak, M. Aghbashlo, M. Tabatabaei, G. Najafpour, H. Younesi, Energy Technol. 2016, 4, 429–440.
- 137 R. Nanqi, G. Wanqian, L. Bingfeng, C. Guangli, D. Jie, Curr. Opin. Biotechnol. 2011, 22, 365–370.
- 138 C. H. Lay, J. H. Wu, C. L. Hsiao, J. J. Chang, C. C. Chen, C. Y. Lin, Int. J. Hydrogen Energy 2010, 35, 13445–13451.
- 139 S. L. Li, L. M. Whang, Y. C. Chao, Y. H. Wang, Y. F. Wang, C. J. Hsiao, Int. J. Hydrogen Energy 2010, 35, 61–70.
- 140 T. Kondo, T. Wakayama, J. Miyake, Int. J. Hydrogen Energy 2006, 31, 1522–1526.
- 141 J. S. Chang, K. S. Lee, P. J. Lin, Int. J. Hydrogen Energy 2002, 27, 1167–1174.
- 142 K. J. Wu, C. F. Chang, J. S. Chang, Process Biochem. 2007, 42, 1165–1171.
- 143 G. Y. Chang, C. Y. Lin, Int. J. Hydrogen Energy 2004, 29, 33–39.
- 144 N. Q. Ren, H. Chua, S. Y. Chan, Y. F. Tsang, Y. J. Wang, N. Sin, Bioresour. Technol. 2007, 98, 1774–1780.
- 145 K. S. Lee, Y. C. Lo, P. J. Lin, J. S. Chang, Int. J. Hydrogen Energy 2006, 31, 1648–1657.
- 146 N. Kumar, D. Das, Enzyme Microb. Technol. 2001, 29, 280–287.
- 147 F. Romagnoli, D. Blumberga, I. Pilick, Int. J. Hydrogen Energy 2011, 36, 7866–7871.
- 148 S. N. Djomo, D. Blumberga, Bioresour. Technol. 2011, 102, 2684–2694.
- 149 H. G. Pottering, P. Necas, Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC, Off. J. EU 2009, L140, 16–62.
- 150 D. Rathore, A. Singh, D. Dahiya, P. S. Nigam, AIMS Energy 2009, 7, 1–19.
- 151 A. Melis, T. Happe, Biofuel Res. J. 2001, 11, 470–474.