Proper Orthogonal Decomposition and Statistical Analysis of 2D Confined Impinging Jets Chaotic Flow
Corresponding Author
Pedro Torres
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, M13 9PL Manchester, UK
Correspondence: Pedro Torres ([email protected]), The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, Manchester M13 9PL, UK; Ricardo J. Santos ([email protected]), Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, PortugalSearch for more papers by this authorNelson D. Goncalves
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorClaudio P. Fonte
The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, M13 9PL Manchester, UK
Search for more papers by this authorMadalena M. Dias
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorJosé Carlos B. Lopes
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorAlain Liné
Université de Toulouse, LISBP, INSA, INRA, CNRS, Toulouse, France
Search for more papers by this authorCorresponding Author
Ricardo J. Santos
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Correspondence: Pedro Torres ([email protected]), The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, Manchester M13 9PL, UK; Ricardo J. Santos ([email protected]), Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, PortugalSearch for more papers by this authorCorresponding Author
Pedro Torres
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, M13 9PL Manchester, UK
Correspondence: Pedro Torres ([email protected]), The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, Manchester M13 9PL, UK; Ricardo J. Santos ([email protected]), Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, PortugalSearch for more papers by this authorNelson D. Goncalves
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorClaudio P. Fonte
The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, M13 9PL Manchester, UK
Search for more papers by this authorMadalena M. Dias
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorJosé Carlos B. Lopes
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorAlain Liné
Université de Toulouse, LISBP, INSA, INRA, CNRS, Toulouse, France
Search for more papers by this authorCorresponding Author
Ricardo J. Santos
Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Correspondence: Pedro Torres ([email protected]), The University of Manchester, School of Chemical Engineering & Analytical Science, Oxford Road, Manchester M13 9PL, UK; Ricardo J. Santos ([email protected]), Universidade do Porto, Faculdade de Engenharia, Department of Chemical Engineering, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Rua Dr. Roberto Frias, 4200-465 Porto, PortugalSearch for more papers by this authorAbstract
Proper orthogonal decomposition (POD) is shown to be a statistical operation that identifies the main characteristics of chaotic flows and separates them into a few modes. The dynamic chaotic flow is obtained from two-dimensional (2D) computational fluid dynamics simulations, for different Reynolds numbers, of a confined impinging jets mixer. POD enables reconstruction of the dynamic flow from a few modes that are related to coherent flow structures. The POD flow reconstruction enables a large compression of the flow data set. The decomposition of the flow field into orthogonal modes related to coherent structures provides direct insight into the mixing dynamics and scales which are not accessible from flow dynamics statistic quantities, which were introduced in the context of turbulence and are here applied to chaotic flow.
References
- 1 Y. C. Liang, H. P. Lee, S. P. Lim, W. Z. Lin, K. H. Lee, C. G. Wu, J. Sound Vib. 2002, 252 (3), 527–544. DOI: https://doi.org/10.1006/jsvi.2001.4041
- 2
P. Holmes, J. L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge
1996, 86–128.
10.1017/CBO9780511622700.004 Google Scholar
- 3 D. D. Kosambi, J. Indian Math. Soc. 1943, 7, 76–88.
- 4 M. Loève, Acad. Sci., Paris, C. R. 1945, 220, 469.
- 5 K. Karhunen, Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys. 1946, 34, 7.
- 6 S. S. Sapatnekar, IEEE J. Emerging Sel. Top. Circuits Syst. 2011, 1 (1), 5–18. DOI: https://doi.org/10.1109/jetcas.2011.2138250
- 7 J. M. Ottino, The Kinematics of Mixing, Cambridge University Press, Cambridge 1989.
- 8 J. M. Ottino, S. C. Jana, V. S. Chakravarthy, Phys. Fluids 1994, 6 (2), 685–699. DOI: https://doi.org/10.1063/1.868308
- 9 A. Ducci, Z. Doulgerakis, M. Yianneskis, Ind. Eng. Chem. Res. 2008, 47 (10), 3664–3676. DOI: https://doi.org/10.1021/ie070905m
- 10 Z. Doulgerakis, M. Yianneskis, A. Ducci, AIChE J. 2011, 57 (11), 2941–2954. DOI: https://doi.org/10.1002/aic.12519
- 11 A. Liné, Chem. Eng. Res. Des. 2016, 108, 13–22. DOI: https://doi.org/10.1016/j.cherd.2015.10.023
- 12 A. Liné, J. C. Gabelle, J. Morchain, D. Anne-Archard, F. Augier, Chem. Eng. Res. Des. 2013, 91 (11), 2073–2083. DOI: https://doi.org/10.1016/j.cherd.2013.05.002
- 13 W. H. Weheliye, N. Cagney, G. Rodriguez, M. Micheletti, A. Ducci, Phys. Fluids 2018, 30 (3), 033603. DOI: https://doi.org/10.1063/1.5016305
- 14 R. J. Santos, A. M. Teixeira, M. R. P. F. N. Costa, J. C. B. Lopes, Int. Polym. Process. 2002, 17 (4), 387–394.
- 15 R. J. Santos, A. M. Teixeira, J. C. B. Lopes, Chem. Eng. Sci. 2005, 60 (8–9), 2381–2398. DOI: https://doi.org/10.1016/J.Ces.2004.11.050
- 16 R. J. Santos, A. M. Teixeira, E. Erkoç, M. A. Sultan, A. Karpinska, M. M. Dias, J. C. B. Lopes, Int. J. Chem. React. Eng. 2010, 8, A32.
- 17 R. J. Santos, E. Erkoç, M. M. Dias, J. C. B. Lopes, AIChE J. 2009, 55 (6), 1338–1351. DOI: https://doi.org/10.1002/aic.11771
- 18 C. P. Fonte, R. J. Santos, M. M. Dias, J. C. B. Lopes, Int. J. Chem. React. Eng. 2011, 9, A114. DOI: https://doi.org/10.2202/1542-6580.2564
- 19 C. A. P. da Fonte, Mixing Studies with Impinging Jets, Ph.D. Thesis, Universidade do Porto, 2012.
- 20 N. D. Gonçalves, H. M. Salvador, C. P. Fonte, M. M. Dias, J. C. B. Lopes, R. J. Santos, AIChE J. 2017, 63 (6), 2335–2347. DOI: https://doi.org/10.1002/aic.15566
- 21 R. J. Santos, M. A. Sultan, Chem. Eng. Technol. 2013, 36 (6), 937–949. DOI: https://doi.org/10.1002/ceat.201200678
- 22 J. Matos, M. S. C. A. Brito, M. M. Dias, J. C. B. Lopes, R. J. Santos, Chem. Eng. Sci. 2018, 192, 199–210. DOI: https://doi.org/10.1016/J.CES.2018.07.035
- 23 S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge 2001.
- 24 L. Sirovich, Phys. D 1989, 37 (1), 126–145. DOI: https://doi.org/10.1016/0167-2789(89)90123-1