Assessing Blending of Non-Newtonian Fluids in Static Mixers by Planar Laser-Induced Fluorescence and Electrical Resistance Tomography
Giuseppe Forte
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
Johnson Matthey Technology Centre, Johnson Matthey, TS23 4LB Billingham, United Kingdom
Search for more papers by this authorAndrea Albano
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
University of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi 2, 56126 Pisa, Italy
Search for more papers by this authorMark J. H. Simmons
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
Search for more papers by this authorHugh E. Stitt
Johnson Matthey Technology Centre, Johnson Matthey, TS23 4LB Billingham, United Kingdom
Search for more papers by this authorElisabetta Brunazzi
University of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi 2, 56126 Pisa, Italy
Search for more papers by this authorCorresponding Author
Federico Alberini
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
Correspondence: Federico Alberini ([email protected]), University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom.Search for more papers by this authorGiuseppe Forte
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
Johnson Matthey Technology Centre, Johnson Matthey, TS23 4LB Billingham, United Kingdom
Search for more papers by this authorAndrea Albano
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
University of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi 2, 56126 Pisa, Italy
Search for more papers by this authorMark J. H. Simmons
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
Search for more papers by this authorHugh E. Stitt
Johnson Matthey Technology Centre, Johnson Matthey, TS23 4LB Billingham, United Kingdom
Search for more papers by this authorElisabetta Brunazzi
University of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi 2, 56126 Pisa, Italy
Search for more papers by this authorCorresponding Author
Federico Alberini
University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom
Correspondence: Federico Alberini ([email protected]), University of Birmingham, School of Chemical Engineering, Edgbaston, B152TT Birmingham, United Kingdom.Search for more papers by this authorAbstract
Planar laser-induced fluorescence (PLIF) and electrical resistance tomography (ERT) were applied simultaneously to monitor the mixing performance of a KM static mixer for the blending of non-Newtonian fluids of dissimilar rheologies in the laminar regime. The areal distribution method was used to obtain quantitative information from the ERT tomograms and the PLIF images. Comparison of the ERT and PLIF results demonstrates the ability of ERT to detect the mixing performance in cases of poor mixing within the resolution of the measurement, though the accuracy decreases as the condition of perfect mixing is approached. Thus, ERT has the potential to detect poor mixing within the confines of its resolution limit and the required conductivity contrast, providing potential rapid at-line measurement for industrial practitioners.
Supporting Information
Filename | Description |
---|---|
ceat201800728-sup-0001-misc_information.pdf516.5 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 R. K. Connelly, J. L. Kokini, J. Food Eng. 2007, 79 (3), 956–969. DOI: https://doi.org/10.1016/j.jfoodeng.2006.03.017
- 2 S. Prakash, M. V. Karwe, J. L. Kokini, J. Food Process Eng. 1999, 22 (6), 435–454. DOI: https://doi.org/10.1111/j.1745-4530.1999.tb00498.x
- 3 Handbook of Industrial Mixing: Science and Practice (Eds.: E. L. Paul, V. A. Atiemo-Obeng, S. M. Kresta), John Wiley & Sons, New York 2004.
- 4 M. M. Alvarez, F. J. Muzzio, S. Cerbelli, A. Adrover, M. Giona, Phys. Rev. Lett. 1998, 81 (16), 3395–3398. DOI: https://doi.org/10.1103/PhysRevLett.81.3395
- 5 D. M. Hobbs, F. J. Muzzio, Chem. Eng. J. 1997, 67 (3), 153–166. DOI: https://doi.org/10.1016/S1385-8947(97)00013-2
- 6 E. Saatdjian, A. J. S. Rodrigo, J. P. B. Mota, Chem. Eng. J. 2012, 187, 289–298. DOI: https://doi.org/10.1016/j.cej.2012.01.122
- 7 O. Wunsch, G. Bohme, Arch. Appl. Mech. 2000, 70 (1–3), 91–102. DOI: https://doi.org/10.1007/s004199900042
- 8 H. Aref, J. Fluid Mech. 1984, 143, 1–21. DOI: https://doi.org/10.1017/S0022112084001233
- 9
Y. Le Guer, K. El Omari, in Advances in Applied Mechanics (Eds.: E. van der Giessen, H. Aref), Elsevier Academic Press, San Diego, CA
2012, 189–237.
10.1016/B978-0-12-380876-9.00005-7 Google Scholar
- 10 F. Alberini, M. J. H. Simmons, A. Ingram, E. H. Stitt, AIChE J. 2014, 60 (1), 332–342. DOI: https://doi.org/10.1002/aic.14237
- 11 P. E. Arratia, F. J. Muzzio, Ind. Eng. Chem. Res. 2004, 43 (20), 6557–6568. DOI: https://doi.org/10.1021/ie049838b
- 12 J. Ramsay, M. J. H. Simmons, A. Ingram, E. H. Stitt, Chem. Eng. Res. Des. 2016, 115, 310–324. DOI: https://doi.org/10.1016/j.ces.2004.01.015
- 13 M. Faes, B. Glasmacher, Chem. Eng. Sci. 2008, 63 (19), 4649–4655. DOI: https://doi.org/10.1016/j.ces.2007.10.036
- 14 P. Pianko-Oprych, A. W. Nienow, M. Barigou, Chem. Eng. Sci. 2009, 64 (23), 4955–4968. DOI: https://doi.org/10.1016/j.ces.2009.08.003
- 15 V. Stobiac, L. Fradette, P. A. Tanguy, F. Bertrand, Can. J. Chem. Eng. 2014, 92 (4), 729–741. DOI: https://doi.org/10.1002/cjce.21906
- 16 E. S. Szalai, P. Arratia, K. Johnson, F. J. Muzzio, Chem. Eng. Sci. 2004, 59 (18), 3793–3805. DOI: https://doi.org/10.1016/j.ces.2003.12.033
- 17 K. G. Chandra, D. D. Kale, Chem. Eng. Sci. 1992, 47, 2097–2100. DOI: https://doi.org/10.1016/0009-2509(92)80327-9
- 18 H. Z. Li, C. Fasol, L. Choplin, Chem. Eng. Res. Des. 1997, 75 (8), 792–796. DOI: https://doi.org/10.1205/026387697524461
- 19 I. Edwards, S. A. Axon, M. Barigou, E. H. Stitt, Ind. Eng. Chem. Res. 2009, 48 (2), 1019–1028. DOI: https://doi.org/10.1021/ie8010353
- 20 M. Barigou, Chem. Eng. Res. Des. 2004, 82 (9), 1258–1267. DOI: https://doi.org/10.1205/cerd.82.9.1258.44160
- 21 M. Rafiee, S. Bakalisa, P. J. Fryer, A. Ingram, Procedia Food Sci. 2011, 1, 678–684. DOI: https://doi.org/10.1016/j.profoo.2011.09.102
- 22 S. D. Bell, Ph. D. Thesis, University of Birmingham 2015.
- 23 T. Avalosse, M. J. Crochet, AIChE J. 1997, 43 (3), 588–597. DOI: https://doi.org/10.1002/aic.690430304
- 24 R. K. Rahmani, T. G. Keith, A. Ayasoufi, J. Fluids Eng. 2005, 128 (3), 467–480. DOI: https://doi.org/10.1115/1.2174058.
- 25 D. Rauline, J.-M. Le Blévec, J. Bousquet, P. A. Tanguy, Chem. Eng. Res. Des. 2000, 78 (3), 389–396. DOI: https://doi.org/10.1205/026387600527284
- 26 M. Regner, K. Östergren, C. Trägårdh, Chem. Eng. Sci. 2006, 61 (18), 6133–6141. DOI: https://doi.org/10.1016/j.ces.2006.05.044
- 27 W. F. C. van Wageningen, D. Kandhai, R. F. Mudde, H. E. A. van den Akker, AIChE J. 2004, 50 (8), 1684–1696. DOI: https://doi.org/10.1002/aic.10178
- 28 S. Peryt-Stawiarska, S. Jaworski, Przem. Chem. 2014, 93 (2), 196–198.
- 29 J. M. Zalc, E. S. Szalai, M. M. Alvarez, F. J. Muzzio, AIChE J. 2002, 48 (10), 2124–2134. DOI: https://doi.org/10.1002/aic.690481004
- 30 C. Uendey, S. Ertunc, T. Mistretta, B. Looze, J. Process Control 2010, 20 (9), 1009–1018. DOI: https://doi.org/10.1016/j.jprocont.2010.05.008
- 31 T. W. Blythe, A. J. Sederman, E. H. Stitt, A. P. E. York, L. F. Gladden, J. Magn. Reson. 2017, 274, 103–114. DOI: https://doi.org/10.1016/j.jmr.2016.11.003
- 32 D. M. Pfund, M. S. Greenwood, J. A. Bamberger, R. A. Pappas, Ultrasonics 2006, 44, E477–E482. DOI: https://doi.org/10.1016/j.ultras.2006.05.027
- 33 T. Fu, O. Carrier, D. Funfschilling, Y. Ma, H. Z. Li, Chem. Eng. Technol. 2016, 39 (5), 987–992. DOI: https://doi.org/10.1002/ceat.201500620
- 34 L. Pakzad, F. Ein-Mozaffari, P. Chan, Chem. Eng. Sci. 2008, 63 (9), 2508–2522. DOI: https://doi.org/10.1016/j.ces.2008.02.009
- 35 M. Wang, F. J. Dickin, R. Mann, Chem. Eng. Commun. 1999, 175 (1), 49–70. DOI: https://doi.org/10.1080/00986449908912139
- 36 S. Jegatheeswaran, F. Ein-Mozaffari, J. Wu, Chem. Eng. Process. 2018, 124, 1–10. DOI: https://doi.org/10.1016/j.cep.2017.11.018
- 37 Z. Ren, A. Kowalski, T. L. Rodgers, Flow Meas. Instrum. 2017, 58, 31–37. DOI: https://doi.org/10.1016/j.flowmeasinst.2017.09.013
- 38 W. Yenjaichon, G. Pageau, M. Bhole, C. P. J. Bennington, J. R. Grace, Can. J. Chem. Eng. 2011, 89 (5), 996–1004. DOI: https://doi.org/10.1002/cjce.20502
- 39 T. D. Machin, H.-Y. Wei, R. W. Greenwood, M. J. H. Simmons, Chem. Eng. Sci. 2018, 187, 327–341. DOI: https://doi.org/10.1016/j.ces.2018.05.017
- 40 F. Alberini, M. J. H. Simmons, A. Ingram, E. H. Stitt, Chem. Eng. Sci. 2014, 112, 152–169. DOI: https://doi.org/10.1016/j.ces.2014.03.022
- 41 W. Q. Yang, L. Peng, Meas. Sci. Technol. 2003, 14 (1), R1–R13. DOI: https://doi.org/10.1088/0957-0233/14/1/201
- 42 K. Wei, C. Qiu, M. Soleimani, K. Primrose, Flow Meas. Instrum. 2015, 46, 292–302. DOI: https://doi.org/10.1016/j.flowmeasinst.2015.08.001
- 43 L. Komzsik, The Lanczos Method: Evolution and Application, SIAM, Philadelphia, PA 1987.