Minimization of the Theoretical Error of Input Parameters for a Vapor Permeation Apparatus
Pavel Dytrych
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorZuzana Vajglová
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorLenka Morávková
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorVěra Jandová
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorPavel Izák
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Zuzana Petrusová
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Correspondence: Zuzana Petrusová ([email protected]), Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic.Search for more papers by this authorPavel Dytrych
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorZuzana Vajglová
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorLenka Morávková
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorVěra Jandová
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorPavel Izák
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Zuzana Petrusová
Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic
Correspondence: Zuzana Petrusová ([email protected]), Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/2, 16502 Prague, Czech Republic.Search for more papers by this authorAbstract
All input experimental errors for membrane flux determination were analyzed. The overall error in pressure did not largely influence the determination of membrane flux. The main contribution to errors was ascribed to flow meters and membrane thickness. The choice of an optimal operational range for input parameters led to elimination of at least 2/3 of the theoretical relative error for subsequent evaluation of the permeability of individual species. This is especially valuable for low-permeable membranes, whereas a very low relative theoretical error can be obtained in the case of highly permeable materials.
References
- 1 A. Sadeghi, A. Hemmati, M. Ghadiri, S. Shirazian, Chem. Eng. Technol. 2017, 40 (9), 1652–1659.
- 2 N. Norahim, P. Yaisanga, K. Faungnawakij, T. Charinpanitkul, C. Klaysom, Chem. Eng. Technol. 2018, 41 (2), 211–223.
- 3 O. Vopička, K. Pilnáček, K. Friess, Sep. Purif. Technol. 2017, 174, 1–11.
- 4 W. Kujawski, Pol. J. Environ. Stud. 2000, 9 (1), 13–26.
- 5 G. Rebollar-Perez, E. Carretier, N. Lesage, P. Moulin, Membranes 2011, 1 (4), 80–90.
- 6 L. Morávková, Z. Wagner, Z. Sedláková, J. Linek, J. Chem. Thermodyn. 2011, 43 (12), 1906–1916.
- 7 P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res. 2009, 48 (10), 4638–4663.
- 8 R. Pelalak, Z. Heidari, H. Soltani, S. Shirazian, Chem. Eng. Technol. 2018, 41 (2), 345–352.
- 9 H. J. Kim, S. S. Nah, B. R. Min, Adv. Environ. Res. 2002, 6 (3), 255–264.
- 10 L. J. Lozano, C. Godínez, A. de los Ríos, F. Hernández-Fernández, S. Sánchez-Segado, F. J. Alguacil, J. Membr. Sci. 2011, 376 (1–2), 1–14.
- 11 H. Paul, C. Philipsen, F. J. Gerner, H. Strathmann, J. Membr. Sci. 1988, 36, 363–372.
- 12 N. Raoufi, M. Asadollahzadeh, S. Shirazian, Chem. Eng. Technol. 2018, 41 (2), 278–284.
- 13 C. Guizard, B. Boutevin, F. Guida, A. Ratsimihety, P. Amblard, J.-C. Lasserre, S. Naiglin, Sep. Purif. Technol. 2001, 22–23, 23–30.
- 14 J. J. Torres, J. T. Arana, N. A. Ochoa, J. Marchese, C. Pagliero, Chem. Eng. Technol. 2018, 41 (2), 253–260.
- 15 J. Yu, C. Wang, L. Xiang, Y. Xu, Y. Pan, Chem. Eng. Sci. 2018, 179, 1–12.
- 16 M. Wang, H. Wu, X. Jin, C. Yang, X. He, F. Pan, Z. Jiang, C. Wang, M. Chen, P. Zhang, X. Cao, Chem. Eng. Sci. 2018, 178, 273–283.
- 17 L. Morávková, O. Vopička, Z. Sedláková, J. Vejražka, K. Friess, H. Vychodilová, P. Izák, Chem. Pap. 2014, 68 (12), 1739–1746.
- 18 O. Vopička, L. Morávková, J. Vejražka, Z. Sedláková, K. Friess, P. Izák, Chem. Eng. Process. 2015, 94, 72–77.
- 19 Z. Petrusová, Z. Vajglová, L. Morávková, J. C. Jansen, J. Vejražka, P. Izák, Chem. Biochem. Eng. Q. 2017, 31 (2), 145–160.
- 20 O. Prokopová, B. Bernauer, V. Fíla, P. Čapek, P. Sysel, P. Hrabánek, A. Zikánová, L. Brabec, M. Kočiřík, Chem. Listy 2013, 107, 214–218.
- 21 S.-J. Ahn, G.-N. Yun, A. Takagaki, R. Kikuchi, S. T. Oyama, Sep. Purif. Technol. 2018, 194, 197–206.
- 22 D. A. Figuero, P. Daniela, S. Laoretani, J. Zelin, R. Vargas, A. R. Vecchietti, J. Espinosa, Sep. Purif. Technol. 2017, 189, 296–309.
- 23 V. V. Zhmakin, V. V. Teplyakov, Sep. Purif. Technol. 2017, 186, 145–155.
- 24 P. Dolejš, V. Poštulka, Z. Sedláková, J. C. Jansen, P. Izák, Sep. Purif. Technol. 2014, 131, 108–116.
- 25
M. Mulder, Basic Principles of Membrane Technology, Springer Science & Business Media, Dordrecht
1996, Chapter 8.
10.1007/978-94-009-1766-8 Google Scholar
- 26 C. B. Williamham, W. J. Taylor, J. M. Pignocco, F. D. Rossini, J. Res. Nat. Inst. Stand. Technol. 1945, 35 (3), 219–244.
- 27Database NIST (hexane vapor pressure): http://webbook.nist.gov/cgi/cbook.cgi?ID=C110543&Units=SI&Mask=4#Thermo-Phase
- 28 H. Haghshenas, M. T. Sadeghi, M. Ghadiri, Chem. Eng. Process. 2016, 102, 194–201.
- 29 M. A. Khansary, A. Marjani, S. Shirazian, J. Membr. Sci. 2017, 538, 18–33.
- 30 W. Ogieglo, I. Pinnau, M. Wessling, J. Membr. Sci. 2018, 546, 206–214.
- 31 A. V. Penkova, M. E. Dmitrenko, N. A. Savon, A. B. Missyul, A. S. Mazur, A. I. Kuzminova, A. A. Zolotarev, V. Mikhailovskii, E. Lahderanta, D. A. Markelov, K. N. Semenov, S. S. Ermakov, Sep. Purif. Technol. 2018, 204, 1–12.
- 32 L. Liu, S. E. Kentish, J. Membr. Sci. 2018, 553, 63–69.
- 33 W. Yang, H. Zhou, C. Zong, Y. Li, W. Jin, Sep. Purif. Technol. 2018, 200, 273–283.
- 34 J. P. G. Villaluenga, M. Khayet, P. Godino, B. Seoane, J. I. Mengual, Sep. Purif. Technol. 2005, 47, 80–87.
- 35 M. Yasukawa, S. Mishima, Y. Tanaka, T. Takahashi, H. Matsuyama, Desalination 2017, 402, 1–9.
- 36 Q. Yang, Y. Su, C. Chi, C. T. Cherian, K. Huang, V. G. Kravets, F. C. Wang, J. C. Zhang, A. Pratt, A. N. Grigorenko, F. Guinea, A. K. Geim, R. R. Nair, Nat. Mater. 2017, 16, 1198–1202.
- 37 H. H. Nijhuis, M. H. V. Mulder, C. A. Smolders, J. Membr. Sci. 1991, 61, 99–111.
- 38 M. S. McCaig, D. R. Paul, Polymer 2000, 41, 629–637.
- 39 L. Liu, A. Chakma, X. Feng, Chem. Eng. Sci. 2006, 61, 6142–6153.
- 40 S. A. Altinkaya, Chem. Eng. Sci. 2005, 60, 269–277.