ONIOM Study for Selectivity of Extractants for Extraction of Rare-Earth Metals
Swagatika Dash
CSIR, Institute of Minerals and Materials Technology, 751013 Bhubaneswar, India
Academy of Scientific and Innovative Research, 201002 Ghaziabad, India
Search for more papers by this authorCorresponding Author
Swati Mohanty
CSIR, Institute of Minerals and Materials Technology, 751013 Bhubaneswar, India
Correspondence: Swati Mohanty ([email protected][email protected]), CSIR, Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India.Search for more papers by this authorSwagatika Dash
CSIR, Institute of Minerals and Materials Technology, 751013 Bhubaneswar, India
Academy of Scientific and Innovative Research, 201002 Ghaziabad, India
Search for more papers by this authorCorresponding Author
Swati Mohanty
CSIR, Institute of Minerals and Materials Technology, 751013 Bhubaneswar, India
Correspondence: Swati Mohanty ([email protected][email protected]), CSIR, Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India.Search for more papers by this authorAbstract
A hybrid molecular modelling technique, the ONIOM method, has been used to study the selectivity of various extractants for the extraction of La3+ and Nd3+. MM calculations have been done for the environmental system, whereas DFT calculation has been carried out for the model system. The total ONIOM energy of the metal-ligand complexes was calculated and the selectivity of La3+ and Nd3+ for D2EPHA, Cyanex 272 as well as PC88A determined based on the interaction energy. The lower energy for Nd complexes compared to La complexes for all three extractants shows preference of Nd over La. The ONIOM calculations infer the stability of the metal complexes in the order of D2EPHA >PC88A >Cyanex 272, which agrees well with the experimental results for both metal ions.
References
- 1 F. Xie, T. A. Zhang, D. Dreisinger, F. Doyle, Miner. Eng. 2014, 56, 10–28.
- 2 G. M. Ritcey, A. W. Ashbrook, Solvent Extraction: Principles and Applications to Process Metallurgy, Part I., Elsevier, Amsterdam 1984.
- 3
J. Rydberg, M. Cox, C. Musikas, G. R. Choppin, Solvent Extraction Principles and Practice, 2nd ed., Marcel Dekker Inc, New York
2004.
10.1201/9780203021460 Google Scholar
- 4 K. Yoshizuka, Anal. Sci. 2004, 20, 761–765.
- 5 B. P. Hay, Coord. Chem. Rev. 1993, 126, 177–236.
- 6 K. Uezu, K. Yoshizuka, Solvent Extr. Res. Dev. 2007, 14, 1–15.
- 7 K. Yoshizuka, T. Shinohara, H. Shigematsu, S. Kuroki, K. Inoue, Solvent Extr. Res. Dev. 2006, 13, 115–122.
- 8 K. Uezu, Q. T. H. Le, S. Umetani, P. Comba, Solvent Extr. Res. Dev. 2006, 13, 161–173.
- 9 J. Beech, M. G. B. Drew, P. B. Leeson, Struct. Chem. 1996, 7, 153–165.
- 10 P. C. Comba, K. Gloe, K. Inoue, T. Krüger, H. Stephan, K. Yoshizuka, Inorg. Chem. 1998, 37, 3310–3315.
- 11 D. M. Ferguson, D. J. Raber, J. Comput. Chem. 1990, 11, 1061–1071.
- 12 G. G. Krishna, R. S. Reddy, P. Raghunath, K. Bhanuprakash, M. L. Kantam, B. M. Choudary, J. Phys. Chem. B 2004, 108, 6112–6120.
- 13 S. K. Nagappayya, V. G. Gaikar, S. k. M. Ali, Desalin. Water Treat. 2012, 38, 1–7.
- 14 L. W. Chung, M. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. Ke, F. Liu, H.-B. Li, L. Ding, K. Morokuma, Chem. Rev. 2015, 115, 5678–5796.
- 15 M. Kuno, S. Hannongbua, K. Morokuma, Chem. Phys. Lett. 2003, 380, 456–463.
- 16 P. Nunrium, M. Kuno, S. Saen-oon, S. Hannongbua, Chem. Phys. Lett. 2005, 405, 198–202.
- 17 D. Majumdar, S. Roszak, J. Leszcynski, J. Phys. Chem. B 2006, 110, 13597–13607.
- 18 Y.-H. Liang, F.-E. Chen, J. Drug Discovery Ther. 2007, 1, 57–60.
- 19 K. Morokuma, Q. Wang, T. Vreven, J. Chem. Theory Comput. 2006, 2, 1317–1324.
- 20 D. G. Gusev, A. J. Lough, Organometallics 2002, 21, 5091–5099.
- 21 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddrd, III, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024–10035.
- 22 A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100.
- 23 C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789.
- 24 A. R. Leach, Molecular Modelling: Principle and Applications, 2nd ed., Pearson Education Ltd., India 2003.
- 25 W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, 1133–1138.
- 26 S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211.
- 27 M. Dolg, H. Stoll, H. Press, J. Chem. Phys. 1989, 90, 1730–1734.
- 28 W. J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 1984, 81, 6026–6033.
- 29 T. R. Cundari, W. J. Stevans, J. Chem. Phys. 1993, 98, 5555–5565.
- 30 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2016.
- 31 R. Banda, H. S. Jeon, M. S. Lee, Hydrometallurgy 2012, 121–124, 74–80.
- 32
R. D. Shannon, Acta Crystallogr.
1976, A3, 751–767.
10.1107/S0567739476001551 Google Scholar