Control of Continuous Mixed-Solution Mixed-Product Removal Crystallization Processes
Corresponding Author
Rostyslav Geyyer
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Correspondence: Rostyslav Geyyer ([email protected]), Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.Search for more papers by this authorRobert Dürr
KU Leuven, Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section, Celestijnenlaan 200f – Box 2424, 3001 Leuven, Belgium
Search for more papers by this authorErik Temmel
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorTao Li
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorHeike Lorenz
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorStefan Palis
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorAndreas Seidel-Morgenstern
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorAchim Kienle
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorCorresponding Author
Rostyslav Geyyer
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Correspondence: Rostyslav Geyyer ([email protected]), Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.Search for more papers by this authorRobert Dürr
KU Leuven, Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section, Celestijnenlaan 200f – Box 2424, 3001 Leuven, Belgium
Search for more papers by this authorErik Temmel
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorTao Li
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorHeike Lorenz
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorStefan Palis
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Search for more papers by this authorAndreas Seidel-Morgenstern
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorAchim Kienle
Otto-von-Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
Search for more papers by this authorAbstract
Continuous mixed-solution mixed-product removal (MSMPR) crystallization is considered. This process has been studied well, however, different aspects, in particular, process modeling, monitoring, and control remain challenging. An innovative approach for online measurement of the crystal size distribution is presented. Furthermore, unscented Kalman filtering is applied to overcome biased concentration measurement. Finally, a discrepancy-based control is applied to continuous MSMPR crystallization and its closed-loop performance is evaluated.
References
- 1 Z. K. Nagy, G. Fevotte, H. J. M. Kramer, L. L. Simon, Chem. Eng. Res. Des. 2013, 91, 1903–1922. DOI: 10.1016/j.cherd.2013.07.018
- 2
A. Chianese, H. J. M. Kramer, Industrial Crystallization Process Monitoring and Control, Wiley-VCH Verlag, Weinheim
2012.
10.1002/9783527645206 Google Scholar
- 3 J. Calderon De Anda, X. Z. Wang, K. J. Roberts, Chem. Eng. Sci. 2005, 60, 1053–1065. DOI: 10.1016/j.ces.2004.09.068
- 4 P. A. Larsen, J. B. Rawlings, N. J. Ferrier, Chem. Eng. Sci. 2007, 62, 1430–1441. DOI: 10.1016/j.ces.2006.11
- 5 M. Kempkes, J. Eggers, M. Mazzotti, Chem. Eng. Sci. 2008, 63, 4656–4675. DOI: 10.1016/j.ces.2007.10.030
- 6 S. Schorsch, T. Vetter, M. Mazzotti, Chem. Eng. Sci. 2012, 77, 130–142. DOI: 10.1016/j.ces.2011.11.029
- 7 B. Presles, J. Debayle, G. Févotte, J.-C. Pinoli, J. Electron. Imaging 2010, 19, 031207. DOI: 10.1117/1.3462800
- 8 A. Mesbah, A. E. M. Huesman, H. J. M. Kramer, P. M. J. Van Den Hof, J. Process Control 2011, 21, 652–666. DOI: 10.1016/j.jprocont.2010.11.013
- 9 T. Chiu, P. D. Christofides, AIChE J. 1999, 45, 1279–1297. DOI: 10.1002/aic.690450613
- 10 U. Vollmer, J. Raisch, Chem. Eng. Sci. 2002, 57, 4401–4414. DOI: 10.1016/S0009-2509(02)00354-8
- 11
R. Geyyer, A. Kienle, S. Palis, IFAC-PapersOnLine
2015, 48, 598–603. DOI: 10.1016/j.ifacol.2015.09.252
10.1016/j.ifacol.2015.09.252 Google Scholar
- 12 Q. Su, Z. K. Nagy, C. D. Rielly, Chem. Eng. Process. 2015, 89, 41–53. DOI: 10.1016/j.cep.2015.01.001
- 13 Y. Yang, Z. K. Nagy, Chem. Eng. Sci. 2015, 127, 362–373. DOI: 10.1016/j.ces.2015.01.060
- 14 Y. Yang, L. Song, Y. Zhang, Z. K. Nagy, Ind. Eng. Chem. Res. 2016, 55 (17), 4987–4996. DOI: 10.1021/acs.iecr.5b04956
- 15 S. Palis, A. Kienle, Automatisierungstechnik 2012, 60, 145–154. DOI: 10.1524/auto.2012.0981
- 16 S. Palis, A. Kienle, J. Process Control 2014, 24, 33–46. DOI: 10.1016/j.jprocont.2013.12.003
- 17 T. Togkalidou, H. Tung, Y. Sun, A. T. Andrews, R. D. Braatz, Ind. Eng. Chem. Res. 2004, 43, 6168–6181. DOI: 10.1021/ie0340847
- 18 H. M. Hulburt, S. Katz, Chem. Eng. Sci. 1964, 19, 555–574. DOI: 10.1016/0009-2509(64)85047-8
- 19 A. D. Randolph, M. A. Larson, Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization, Academic Press, New York 1988.
- 20 E. Temmel, Ph.D. Thesis, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 2016.
- 21 E. Temmel, M. Eicke, H. Lorenz, A. Seidel-Morgenstern, Cryst. Growth Des. 2016, 16 (12), 6756–6768. DOI: 10.1021/acs.cgd.6b00789
- 22 J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698.
- 23 H. Lutz, W. Wendt, Taschenbuch der Regelungstechnik: mit MATLAB und Simulink, Verlag Harri Deutsch, Frankfurt 2012.
- 24 A. Saengchan, P. Kittisupakorn, W. Paengjuntuek, A. Arpornwichanop, J. Ind. Eng. Chem. 2011, 17 (3), 430–438. DOI: 10.1016/j.jiec.2010.09.025
- 25
S. Palis, A. Bück, A. Kienle, IFAC-PapersOnLine
2013, 9, 400–405. DOI: 10.3182/20130904-3-FR-2041.00168
10.3182/20130904‐3‐FR‐2041.00168 Google Scholar