Transferring Electrochemical CO2 Reduction from Semi-Batch into Continuous Operation Mode Using Gas Diffusion Electrodes
Corresponding Author
Dennis Kopljar
University of Stuttgart, Institute for Chemical Technology, Stuttgart, Germany.
University of Stuttgart, Institute for Chemical Technology, Stuttgart, Germany.Search for more papers by this authorNorbert Wagner
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Stuttgart, Germany.
Search for more papers by this authorElias Klemm
University of Stuttgart, Institute for Chemical Technology, Stuttgart, Germany.
Search for more papers by this authorCorresponding Author
Dennis Kopljar
University of Stuttgart, Institute for Chemical Technology, Stuttgart, Germany.
University of Stuttgart, Institute for Chemical Technology, Stuttgart, Germany.Search for more papers by this authorNorbert Wagner
German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Stuttgart, Germany.
Search for more papers by this authorElias Klemm
University of Stuttgart, Institute for Chemical Technology, Stuttgart, Germany.
Search for more papers by this authorAbstract
The electrochemical reduction of CO2 is a promising method for its conversion which still suffers from important challenges that have to be solved before industrial realization becomes attractive. The optimization of gas diffusion electrodes is described with respect to catalyst dispersion and mass transport limitations allowing solubility issues to be circumvented and current densities to be increased to industrially relevant values. The transfer of the promising results from semi-batch experiments into continuous mode of operation is demonstrated, and it is indicated how the energetic efficiency can be significantly improved by the choice of electrolyte, in terms of concentration and type. Thereby ohmic losses can be decreased and the intrinsic activity be improved.
References
- 1 C. H. Christensen, J. Rass-Hansen, C. C. Marsden, E. Taarning, K. Egeblad, ChemSusChem 2008, 1 (4), 283. DOI: 10.1002/cssc.200700168
- 2 R. Agrawal, N. R. Singh, Annu. Rev. Chem. Biomol. Eng. 2010, 1, 343. DOI: 10.1146/annurev-chembioeng-073009-100955
- 3 A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113 (8), 6621. DOI: 10.1021/cr300463y
- 4 M. Aresta, A. Dibenedetto, Dalton Trans. 2007, 28, 2975. DOI: 10.1039/b700658f
- 5 G. Centi, S. Perathoner, Catal. Today 2009, 148 (3–4), 191. DOI: 10.1016/j.cattod.2009.07.075
- 6 C. Genovese, C. Ampelli, S. Perathoner, G. Centi, J. Energy Chem. 2013, 22 (2), 202. DOI: 10.1016/S2095-4956(13)60026-1
- 7 K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5 (5), 7050. DOI: 10.1039/c2ee21234j
- 8 Y. Hori, Mod. Aspects Electrochem. 2008, 42, 89. DOI: 10.1007/978-0-387-49489-0_3
- 9 M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc. 1990, 137 (6), 1772. DOI: 10.1149/1.2086796
- 10 A. S. Agarwal, Y. Zhai, D. Hill, N. Sridhar, ChemSusChem 2011, 4 (9), 1301. DOI: 10.1002/cssc.201100220
- 11 C. Oloman, H. Li, ChemSusChem 2008, 1 (5), 385. DOI: 10.1002/cssc.200800015
- 12 B. Loges, A. Boddien, F. Gärtner, H. Junge, M. Beller, Top. Catal. 2010, 53 (13–14), 902. DOI: 10.1007/s11244-010-9522-8
- 13 S. Enthaler, J. von Langermann, T. Schmidt, Energy Environ. Sci. 2010, 3 (9), 1207. DOI: 10.1039/b907569k
- 14 H.-R. Jhong, S. Ma, P. J. A. Kenis, Curr. Opin. Chem. Eng. 2013, 2 (2), 191. DOI: 10.1016/j.coche.2013.03.005
- 15 D. T. Whipple, P. J. A. Kenis, J. Phys. Chem. Lett. 2010, 1 (24), 3451. DOI: 10.1021/jz1012627
- 16 A. S. Varela, W. Ju, T. Reier, P. Strasser, ACS Catal. 2016, 2136. DOI: 10.1021/acscatal.5b02550
- 17 J. Rosen, G. S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D. G. Vlachos, F. Jiao, ACS Catal. 2015, 5 (7), 4293. DOI: 10.1021/acscatal.5b00840
- 18 Q. Lu, J. Rosen, F. Jiao, ChemCatChem 2015, 7 (1), 38. DOI: 10.1002/cctc.201402669
- 19 D. H. Won, C. H. Choi, J. Chung, M. W. Chung, E.-H. Kim, S. I. Woo, ChemSusChem 2015, 8 (18), 3092. DOI: 10.1002/cssc.201500694
- 20 S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136 (5), 1734. DOI: 10.1021/ja4113885
- 21 Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, Nat. Commun. 2014, 5, 3242. DOI: 10.1038/ncomms4242
- 22 Y. Chen, C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134 (49), 19969. DOI: 10.1021/ja309317u
- 23 S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang, S. Yang, L. Liang, J. Wu, Y. Xie, Angew. Chem., Int. Ed. 2016, 55 (2), 698. DOI: 10.1002/anie.201509800
- 24 M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Král, J. Abiade, A. Salehi-Khojin, Nat. Commun. 2014, 5, 4470. DOI: 10.1038/ncomms5470
- 25 M. F. Baruch, J. E. Pander, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5 (5), 3148. DOI: 10.1021/acscatal.5b00402
- 26 A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom, P. Broekmann, ACS Catal. 2015, 5 (12), 7498. DOI: 10.1021/acscatal.5b02322
- 27 A. Martin Fernandez, G. O. Larrazábal, J. Perez-Ramirez, Green Chem. 2015, 17, 5114. DOI: 10.1039/C5GC01893E
- 28 N. Furuya, T. Yamazaki, M. Shibata, J. Electroanal. Chem. 1997, 431 (1), 39. DOI: 10.1016/S0022-0728(97)00159-9
- 29 M. N. Mahmood, D. Masheder, C. J. Harty, J. Appl. Electrochem. 1987, 17 (6), 1159. DOI: 10.1007/BF01023599
- 30 A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, A. Irabien, Appl. Energy 2015, 157, 165. DOI: 10.1016/j.apenergy.2015.08.012
- 31 D. T. Whipple, E. C. Finke, P. J. A. Kenis, Electrochem. Solid-State Lett. 2010, 13 (9), B109. DOI: 10.1149/1.3456590
- 32 D. Kopljar, A. Inan, P. Vindayer, N. Wagner, E. Klemm, J. Appl. Electrochem. 2014, 44 (10), 1107. DOI: 10.1007/s10800-014-0731-x
- 33 D. Kopljar, A. Inan, P. Vindayer, R. Scholz, N. Frangos, N. Wagner, E. Klemm, Chem. Ing. Tech. 2015, 87 (6), 855. DOI: 10.1002/cite.201400135
- 34 H.-R. Jhong, F. R. Brushett, P. J. A. Kenis, Adv. Energy Mater. 2013, 3 (5), 589. DOI: 10.1002/aenm.201200759
- 35 Q. Wang, H. Dong, H. Yu, H. Yu, J. Power Sources 2015, 279, 1. DOI: 10.1016/j.jpowsour.2014.12.118
- 36 J. Wu, P. P. Sharma, B. H. Harris, X.-D. Zhou, J. Power Sources 2014, 258, 189. DOI: 10.1016/j.jpowsour.2014.02.014
- 37 K. C. Song, Y. Kang, Mater. Lett. 2000, 42 (5), 283. DOI: 10.1016/S0167-577X(99)00199-8
- 38 S. Lee, J. D. Ocon, Y.-i. Son, J. Lee, J. Phys. Chem. C 2015, 119 (9), 4884. DOI: 10.1021/jp512436w
- 39 Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai, K. Oguma, Electrochim. Acta 2005, 50 (27), 5354. DOI: 10.1016/j.electacta.2005.03.015
- 40 H. Li, C. Oloman, J. Appl. Electrochem. 2007, 37 (10), 1107. DOI: 10.1007/s10800-007-9371-8
- 41 K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem. 1995, 391 (1–2), 141. DOI: 10.1016/0022-0728(95)03935-A
- 42 Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134 (4), 1986. DOI: 10.1021/ja2108799
- 43 Z. M. Detweiler, J. L. White, S. L. Bernasek, A. B. Bocarsly, Langmuir 2014, 30 (25), 7593. DOI: 10.1021/la501245p
- 44 C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5 (1), 465. DOI: 10.1021/cs5017672
- 45 N. Wagner, M. Schulze, E. Gülzow, J. Power Sources 2004, 127 (1–2), 264. DOI: 10.1016/j.jpowsour.2003.09.022
- 46 E. J. Dufek, T. E. Lister, S. G. Stone, M. E. McIlwain, J. Electrochem. Soc. 2012, 159 (9), F514–F517. DOI: 10.1149/2.011209jes
- 47 S. Ma, R. Luo, S. Moniri, Y. Lan, P. J. A. Kenis, J. Electrochem. Soc. 2014, 161 (10), F1124–F1131. DOI: 10.1149/2.1201410jes
- 48 M. R. Thorson, K. I. Siil, P. J. A. Kenis, J. Electrochem. Soc. 2012, 160 (1), F69–F74. DOI: 10.1149/2.052301jes
- 49 J. Wu, F. G. Risalvato, F.-S. Ke, P. J. Pellechia, X.-D. Zhou, J. Electrochem. Soc. 2012, 159 (7), F353–F359. DOI: 10.1149/2.049207jes
- 50 S. Verma, X. Lu, S. Ma, R. I. Masel, P. J. A. Kenis, Phys. Chem. Chem. Phys. 2016, 18, 7075. DOI: 10.1039/c5cp05665a