Relevance of the Second Harmonic Generation to Characterize Crystalline Samples
Florent Simon
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
The first two authors contributed equally to this paper.
Search for more papers by this authorSimon Clevers
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
The first two authors contributed equally to this paper.
Search for more papers by this authorCorresponding Author
Valérie Dupray
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.Search for more papers by this authorGérard Coquerel
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
Search for more papers by this authorFlorent Simon
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
The first two authors contributed equally to this paper.
Search for more papers by this authorSimon Clevers
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
The first two authors contributed equally to this paper.
Search for more papers by this authorCorresponding Author
Valérie Dupray
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.Search for more papers by this authorGérard Coquerel
Normandie Université, Crystal Genesis Unit, SMS, EA 3233, Université de Rouen, Mont-Saint-Aignan, France.
Search for more papers by this authorAbstract
The application of powder second harmonic generation (P-SHG), temperature-resolved SHG (TR-SHG), and SHG microscopy (SHGM) in the characterization of bulk crystalline samples is illustrated. P-SHG applied to powder samples can be an extremely sensitive approach to detect the absence of an inversion center in crystalline structures, TR-SHG serves to monitor temperature-induced phase transitions, and SHGM is used in the detection of non-centrosymmetric zones inside a heterogeneous material. These methods are of great relevance, e.g., in the pharmaceutical industry where crystalline active pharmaceutical ingredients are often made of a single enantiomer and are therefore non-centrosymmetric. Herein, several examples are provided to describe how a given SHG signal should be interpreted. A general procedure to carry out a P-SHG experiment is illustrated in detail.
References
- 1 J. Ulrich, Chem. Eng. Technol. 2003, 26, 832–835.
- 2 G. Coquerel, Chem. Soc. Rev. 2014, 43, 2286–2300.
- 3 J. Ulrich, Cryst. Growth Des. 2004, 4, 879–880.
- 4
E. H. Lee, Asian J. Pharm. Sci. 2014, 9, 163–175. DOI: 10.1016/j.ajps.2014.05.002
10.1016/j.ajps.2014.05.002 Google Scholar
- 5 P. H. Karpinski, Chem. Eng. Technol. 2006, 29, 233–237.
- 6 G. Coquerel, Chem. Eng. Process. 2006, 45, 857–862.
- 7 N. Schultheiss, A. Newman, Cryst. Growth Des. 2009, 9, 2950–2967.
- 8 G. Coquerel, Enantiomer 2000, 5, 481–498.
- 9 T. L. Threlfall, Analyst 1995, 120, 2435–2460.
- 10 J. Aaltonen, M. Allesø, S. Mirza, V. Koradia, K. C. Gordon, J. Rantanen, Eur. J. Pharm. Biopharm. 2009, 71, 23–37.
- 11 S. K. Kurtz, IEEE J. Quantum Electron. 1968, QE-4, 578–584.
- 12
S. K. Kurtz, J. P. Dougherty, in Systematic Materials Analysis (Eds: J. H. Richardson), Academic Press, New York 1978.
10.1016/B978-0-12-587804-3.50017-0 Google Scholar
- 13 Y. R. Shen, Nature 1989, 337, 519–525.
- 14
R. L. Sutherland, D. G. Mclean, S. Kirkpatrick, Handbook of Nonlinear Optics, Marcel Dekker, New York 2003.
10.1201/9780203912539 Google Scholar
- 15
N. Bloembergen, Nonlinear Optics, World Scientific Publishing Co., Singapore 1996.
10.1142/3046 Google Scholar
- 16 P. A. Franken, J. F. Ward, Rev. Mod. Phys. 1968, 35, 23–39.
- 17 K. M. Ok, E. O. Chi, P. S. Halasyamani, Chem. Soc. Rev. 2006, 35, 710–717.
- 18 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 380–388.
- 19 B. Kasprzyk-Hordern, Chem. Soc. Rev. 2010, 39, 4466–4503.
- 20 H. Caner, E. Groner, L. Levy, I. Agranat, Drug Discovery Today 2009, 4, 105–110.
- 21 H. Murakami, in Novel Optical Resolution Technologies (Eds: K. Sakai), Springer, New York 2007.
- 22 J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 1962, 127, 1918–1939.
- 23 S. K. Kurtz, T. T. Perry, J. Appl. Phys. 1968, 39, 3798–3813.
- 24 M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum Electron. 1992, 28, 2631–2654.
- 25 M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, E. Rosencher, Nature 2004, 432, 374–376.
- 26 J. Mahieux, M. Sanselme, S. Harthong, C. Melan, C. Aronica, L. Guy, G. Coquerel, Cryst. Growth Des. 2013, 13, 3621–3631.
- 27 F. Simon, S. Clevers, G. Gbabode, N. Couvrat, V. Agasse-Peulon, M. Sanselme, V. Dupray, G. Coquerel, Cryst. Growth Des. 2015, 15, 946–960.
- 28 I. Aramburu, J. Ortega, C. L. Folcia, J. Etxebarria, Appl. Phys. B 2013, 1–23.
- 29 I. Aramburu, J. Ortega, C. L. Folcia, J. Etxebarria, M. A. Illarramendi, T. Breczewski, J. Appl. Phys. 2011, 109, 113105.
- 30 I. Aramburu, J. Ortega, C. L. Folcia, J. Etxebarria, Appl. Phys. Lett. 2014, 104, 071107.
- 31 W. N. Herman, L. M. Hayden, J. Opt. Soc. Am. B 1995, 12, 416–427.
- 32 J. P. Dougherty, S. K. Kurtz, J. Appl. Cryst. 1976, 9, 145–158.
- 33 S. Clevers, F. Simon, V. Dupray, G. Coquerel, J. Therm. Anal. Calorim. 2013, 112, 271–277.
- 34 G. Coquerel, in Novel Optical Resolution Technologies (Eds: K. Sakai), Springer, New York 2007, 1–52.
- 35 A. Galland, V. Dupray, B. Berton, S. Morin-Grognet, M. Sanselme, H. Atmani, G. Coquerel, Cryst. Growth Des. 2009, 9, 2713–2718.
- 36 G. Coquerel, Enantiomer 2000, 5, 481–498.
- 37 V. Dupray, in Recrystallization (Ed: K. Sztwiertnia), InTech, www.intechopen.com/book/recrystallization/recrystallization-of-pure-enatiomers-from-conglomerate.
- 38 S. Clevers, F. Simon, M. Sanselme, V. Dupray, G. Coquerel, Cryst. Growth Des. 2013, 13, 3697–3704.
- 39 P. Prince, F. R. Fronczek, R. D. Gandour, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991, 47, 895–898.
- 40 N. N. Dhaneshwar, S. S. Tavale, L. M. Pant, Acta Cryst. 1974, B30, 583–587.
- 41 N. N. Dhaneshwar, A. G. Kulkarni, S. S. Tavale, L. M. Pant, Acta Cryst. 1978, B31, 1978–1980.
- 42 S. Brasselet, Adv. Opt. Photonics 2011, 3, 205–271.
- 43 C. J. Strachan, M. Windbergs, H. L. Offerhaus, Int. J. Pharm. 2011, 417, 163–172.
- 44 R. Carilles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, J. A. Squier, Rev. Sci. Instrum. 2009, 80, 081101.
- 45 K. Betzler, D. Bäuerle, Phys. Lett. 1979, 70A, 153–154.
- 46 R. C. Hall, I. C. Paul, D. Y. Curtin, J. Am. Chem. Soc. 1988, 110, 2848–2854.
- 47 B. F. Henson, B. W. Asay, R. K. Sander, S. F. Son, J. M. Robinson, P. M. Dickson, Phys. Rev. Lett. 1999, 82, 1213–1216.
- 48 S. F. Son, B. W. Asay, B. F. Henson, R. K. Sander, A. N. Ali, P. M. Zielinski, D. S. Phillips, R. B. Schwarz, C. B. Skidmore, J. Phys. Chem. B 1999, 103, 5434–5440.
- 49 N. Mercier, A.-L. Barres, M. Giffard, I. Rau, F. Kajzar, B. Sahraoui, Angew. Chem. Int. Ed. 2006, 45, 2100–2103.
- 50 P. Bragiel, M. Piasecki, I. Kityk, J. Phys.: Conf. Ser. 2007, 79, 012044.
- 51 W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, B. Sahraoui, Adv. Mater. 2008, 20, 1013–1017.
- 52 R.-G. Xiong, Chin. Chem. Lett. 2013, 24, 681–684.
- 53 S. Clevers, C. Rougeot, F. Simon, M. Sanselme, V. Dupray, G. Coquerel, J. Mol. Struct. 2014, 1078, 61–67.
- 54 D. J. LeCaptain, K. A. Berglund, J. Cryst. Growth 1999, 203, 564–569.
- 55 C. J. Strachan, C. J. Lee, T. Rades, J. Pharm. Sci. 2004, 93, 733–742.
- 56 S. P. Thomas, K. Nagarajan, T. N. Guru Row, Chem. Commun. 2012, 48, 10559–10561.
- 57 C. B. Rawle, C. J. Lee, C. J. Strachan, K. Payne, P. J. Manson, T. Rades, J. Pharm. Sci. 2006, 95, 761–768.
- 58 L. Bayarjargal, B. Winkler, Z. Kristallogr. – Cryst. Mater. 2014, 229, 92–100.
- 59 S. Brasselet, V. Le Floc'h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, A. Ibanez, Phys. Rev. Lett. 2004, 92, 207401.
- 60 J. Xu, J. Bao, B. Guo, H. Ma, T. Yun, L. Gao, Polymer 2007, 48, 348–355.
- 61 D. Wanapun, U. S. Kestur, D. J. Kissik, G. J. Simpson, L. S. Taylor, Anal. Chem. 2010, 82, 5425–5432.
- 62 D. J. Kissick, D. Wanapun, G. J. Simpson, Annu. Rev. Anal. Chem. 2011, 419–437.
- 63 C. J. Strachan, M. Windbergs, H. L. Offerhaus, Int. J. Pharm 2011, 417, 163–172.
- 64 D. Wanapun, U. S. Kestur, L. S. Taylor, G. J. Simpson, Anal. Chem. 2011, 83, 4745–4751.
- 65 U. S. Kestur, D. Wanapun, S. J. Toth, L. A. Wegiel, G. J. Simpson, L. S. Taylor, J. Pharm. Sci. 2012, 101, 4201–4213.
- 66 S. J. Toth, J. T. Madden, L. S. Taylor, P. Marsac, G. J. Simpson, Anal. Chem. 2012, 84, 5869–5875.
- 67 M. A. van der Veen, F. Vermoortele, D. E. De Vos, T. Verbiest, Anal. Chem. 2012, 84, 6378–6385.
- 68 M. A. van der Veen, F. Vermoortele, D. E. De Vos, T. Verbiest, Anal. Chem. 2012, 84, 6386–6390.
- 69 J. Hulliger, T. Wüst, K. Brahami, M. Burgener, H. Aboulfadl, New J. Chem. 2013, 37, 2229–2235.
- 70 A. U. Chowdhury, C. M. Dettmar, S. Z. Sullivan, S. Zhang, K. T. Jacobs, D. J. Kissik, T. Maltais, H. G. Hedderich, P. A. Bishop, G. J. Simpson, J. Am. Chem. Soc. 2014, 136, 2404–2412.
- 71 E. L. DeWalt, S. Z. Sullivan, P. D. Schmitt, R. D. Muir, G. J. Simpson, Anal. Chem. 2014, 86, 8448–8456.
- 72 D. Torkaz, R. Cisek, S. Krouglov, L. Kontenis, U. Fekl, V. Barzda, J. Phys. Chem. B 2014, 118, 3814–3822.
- 73 A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, V. Barzda, J. Comput. Chem. 2011, 32, 1128–1134.
- 74 S. J. Toth, P. D. Schmidtt, G. R. Snyder, N. J. Trasi, S. Z. Sullivan, I. A. George, L. S. Taylor, G. J. Simpson, Cryst. Growth Des. 2015, 15, 581–586.