Improving Physical Absorption of Carbon Dioxide by Ionic Liquid Dispersion
Corresponding Author
H. Liu
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, ChinaSearch for more papers by this authorH. Tian
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorH. Yao
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorD. Yu
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorW. Zhao
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorX. Bai
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorCorresponding Author
H. Liu
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, ChinaSearch for more papers by this authorH. Tian
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorH. Yao
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorD. Yu
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorW. Zhao
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorX. Bai
Shenyang University of Technology, School of Petrochemical Engineering, Liaoyang, China
Search for more papers by this authorAbstract
An ionic liquid (IL), 1-butylimidazole hexafluoride phosphate [bmim]PF4, was dispersed in surfactant solution to form an IL-in-water emulsion. Physical absorption of CO2 was carried out in this emulsion system. Absorption rates of CO2 under different operating conditions were obtained by experimental measurements. CO2 concentrations in the bulk of absorbent and the local volumetric mass transfer coefficients of the liquid phase were calculated by model calculation. Experimental results indicate that the dispersed IL droplets in aqueous solution can significantly enhance CO2 mass transfer at the gas-liquid interface. This phenomenon can be ascribed to the increase of mass transfer driving force and local volumetric mass transfer coefficient. The shuttle effect and hydrodynamic effect proved to play important roles for CO2 absorption improved by dispersed IL.
References
- 1 M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Chem. Eng. Res. Des. 2011, 89, 1609–1624.
- 2 M. Finkenrath, Chem. Eng. Technol. 2012, 35 (3), 482–488.
- 3 L. Dubois, D. Thomas, Chem. Eng. Technol. 2012, 35 (3), 513–524.
- 4 M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J. M. Amann, C. Bouallou, Appl. Therm. Eng. 2010, 30, 53–62.
- 5 V. Linek, M. Kordac, M. Soni, Chem. Eng. Sci. 2008, 63, 5120–5128.
- 6 F. Zhang, C. G. Fang, Y. T. Wu, Y. T. Wang, A. M. Li, Z. B. Zhang, Chem. Eng. J. 2010, 160, 691–697.
- 7 S. Rezvani, Y. Huang, D. McIlveen-Wright, N. Hewitt, J. D. Mondol, Fuel 2009, 88, 2463–2472.
- 8 R. L. Kars, R. J. Best, A. A. H. Drinkenburg, Chem. Eng. J. 1979, 17, 201–210.
- 9 E. Alper, B. Whichtendahl, W. D. Deckwer, Chem. Eng. Sci. 1980, 35, 217–222.
- 10 A. Kaya, A. Schumpe, Chem. Eng. Sci. 2005, 60, 6504–6510.
- 11 J. T. Tinge, A. A. H. Drinkenburg, Chem. Eng. Sci. 1992, 47, 1337–1345.
- 12 J. T. Tinge, A. A. H. Drinkenburg, Chem. Eng. Sci. 1995, 50, 937–942.
- 13 J. F. Demmink, A. Mehra, A. A. C. M. Beenackers, Chem. Eng. Sci. 1998, 53, 2885–2902.
- 14 M. V. Dagaonkar, H. J. Heeres, A. A. C. M. Beenackers, V. G. Pangarkar, Chem. Eng. J. 2003, 92, 151–159.
- 15 J. L. Rols, J. S. Condoret, C. Fonade, G. Goma, Chem. Eng. Sci. 1990, 35, 427–435.
- 16 M. Kordac, V. Linek, Chem. Eng. Sci. 2006, 61, 7125–7132.
- 17 C. J. Van Ede, R. Van Houten, A. A. C. M. Beenackers, Chem. Eng. Sci. 1995, 50, 2911–2922.
- 18 A. Lekhal, R. V. Chaudhari, A. M. Wilhelm, H. Delmas, Chem. Eng. Sci. 1997, 52, 4069–4077.
- 19 R. V. Chaudhari, P. Jayasree, S. P. Gupte, H. Delmas, Chem. Eng. Sci. 1997, 52, 4197–4203.
- 20 C. Lin, M. Zhou, C. J. Xu, Chem. Eng. Sci. 1999, 54, 389–399.
- 21 M. T. Cesairio, W. A. Beverloo, J. Tramper, H. H. Beeftink, Enzyme Microb. Technol. 1997, 21, 578–588.
- 22 K. Boltes, A. Caro, P. Leton, A. Rodriguez, E. Garcia-Calvo, Chem. Eng. Process. 2008, 47, 2408–2412.
- 23 S. Asai, H. Yoshizawa, Ind. Eng. Chem. Res. 1991, 30, 745–751.
- 24 U. Jordan, A. Schumpe, Chem. Eng. Sci. 2001, 56, 6267–6272.
- 25 A. H. G. Cents, D. W. F. Brilman, G. F. Versteeg, Chem. Eng. Sci. 2001, 56, 1075–1083.
- 26 R. J. Little, G. F. Versteeg, W. P. M. van Swaaij, AIChE J. 1994, 40, 1629–1638.
- 27 M. M. Sharma, R. A. Mashelkar, I. Chem. E. Symp. Ser. 1968, 28, 10–21.
- 28 T. R. Das, A. Bandopadhyay, R. Parthasarathy, R. Kumar, Chem. Eng. Sci. 1985, 40, 209–214.
- 29 Z. G. Zhang, W. Chen, S. S. Yu, W. X. Li, Ind. Eng. Chem. Res. 2010, 49, 3223–3227.
- 30 E. Dumont, H. Delmas, Chem. Eng. Process. 2003, 42, 419–438.
- 31 H. G. Joglekar, I. Rahman, B. D. Kulkarni, Chem. Eng. Technol. 2007, 30 (7), 819–828.
- 32 R. E. Baltus, R. M. Counce, B. H. Culbertson, H. M. Luo, D. W. DePaoli, S. Dai, D. C. Duckworth, Sep. Sci. Technol. 2005, 40, 525–541.
- 33 J. H. Davis Jr., ACS Symp. Ser. 2005, 902, 49–56.
- 34 L. M. Galán Sánchez, G. W. Meindersma, A. B. de Haan, Chem. Eng. Res. Des. 2007, 85, 31–39.
- 35 E. D. Bates, R. D. Mayton, L. Ntai, J. H. Davis, JACS 2002, 124 (6), 926–927.
- 36 P. Sharma, S. Do Park, Il H. Baek, Ki T. Park, Y. II Yoon, S. K. Jeong, Fuel Process. Technol. 2012, 100, 55–62.
- 37 M. M. Taib, T. Murugesan, Chem. Eng. J. 2012, 181–182, 56–62.
- 38 J. Jacquemin, M. F. Costa Gomes, P. Husson, V. Majer, J. Chem. Thermodyn. 2006, 38, 490–502.
- 39 C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, J. Am. Chem. Soc. 2004, 126, 5300–5308.
- 40 K. C. Ruthiya, J. van der Schaaf, B. F. M. Kuster, J. C. Schouten, Chem. Eng. J. 2003, 96, 55–69.