Solid-state Materials and Methods for Hydrogen Storage: A Critical Review
K. L. Lim
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorH. Kazemian
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
Search for more papers by this authorZ. Yaakob
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorW. R. W. Daud
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorK. L. Lim
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorH. Kazemian
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
Search for more papers by this authorZ. Yaakob
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorW. R. W. Daud
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorAbstract
Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Current methods for hydrogen storage have yet to meet all the demands for on-board applications. High-pressure gas storage or liquefaction cannot fulfill the storage criteria required for on-board storage. Solid-state materials have shown potential advantages for hydrogen storage in comparison to other storage methods. In this article, the most popular solid-state storage materials and methods including carbon based materials, metal hydrides, metal organic frameworks, hollow glass microspheres, capillary arrays, clathrate hydrates, metal nitrides and imides, doped polymer and zeolites, are critically reviewed. The survey shows that most of the materials available with high storage capacity have disadvantages associated with slow kinetics and those materials with fast kinetics have issues with low storage capacity. Most of the chemisorption-based materials are very expensive and in some cases, the hydrogen absorption/desorption phenomena is irreversible. Furthermore, a very high temperature is required to release the adsorbed hydrogen. On the other hand, the main drawback in the case of physisorption-based materials and methods is their lower capacity for hydrogen storage, especially under mild operating conditions. To accomplish the requisite goals, extensive research studies are still required to optimize the critical parameters of such systems, including the safety (to be improved), security (to be available for all), cost (to be lowered), storage capacity (to be increased), and the sorption-desorption kinetics (to be improved).
References
- 1 E. Fakioglu, Y. Yürüm, T. N. Veziroglu, Int. J. Hydrogen Energy 2003, 29, 1371.
- 2
M. U. Niemann et al.,
J. Nanomater.
2008,
9.
DOI: 10.1155/2008/950967
10.1155/2008/950967 Google Scholar
- 3 M. S. Dresselhaus, I. L. Thomas, Nature 2001, 414 (6861), 332.
- 4 L. Schlapbach, A. Züttel, Nature 2001, 414 (6861), 353.
- 5 Hydrogen Storage Technologies Roadmap, U. S. C. f. A. R. (USCAR), 2005 (Available from: www.uscar.org/commands/files_download.php?files_id=82).
- 6 L. L. Vasiliev et al., Int. J. Hydrogen Energy 2007, 32, 5015.
- 7 R. Chahine, P. Benard, Hydrogen Energy Program 1998, 12, 979.
- 8
A. Züttel,
Mater. Today
2003,
6 (9),
24.
10.1016/S1369-7021(03)00922-2 Google Scholar
- 9 A. C. Dillon et al., Nature 1997, 386, 377.
- 10 A. Chambers, C. Park, R. T. K. Baker, N. M. Rodriguez, J. Phys. Chem. B 1998, 102 (22), 4253.
- 11 M. Hirscher, B. Panella, J. Alloys Compd. 2005, 404–406, 399.
- 12 H. Jin, Y. S. Lee, I. Hong, Catal. Today 2007, 120, 399.
- 13 B. Panella, M. Hirscher, S. Roth, Carbon 2005, 43, 2209.
- 14 H. G. Schimmel et al., Mater. Sci. Eng., B 2004, 108, 124.
- 15
A. Züttel,
P. Sudan,
P. Mauron,
P. Wenger,
Appl. Phys. A: Mater. Sci. Process.
1998,
78,
941.
10.1007/s00339-003-2412-1 Google Scholar
- 16 M. Rzepka, P. Lamp, J. Phys. Chem. B 1998, 102, 10894.
- 17 L. Zubizarreta, A. Arenillas, J. J. Pis, Int. J. Hydrogen Energy 2008, 33, 4337. DOI: 10.1016/j.ijhydene.2008.07.112
- 18 Introduction to Carbon Technologies (Eds: H. Marsh, H. E. Heintz, F. Rodriguez-Reinoso), University of Alicante Press, Alicante 1997, p. 35.
- 19 N. H. Phan et al., Carbon 2006, 44, 2569.
- 20 S. Hynek, W. Fuller, J. Bentley, Int. J. Hydrogen Energy 1997, 22 (6), 601.
- 21 M. Jordá-Beneyto et al., Microporous Mesoporous Mater. 2008, 112 (1–3), 235.
- 22 M. Sharon et al., Int. J. Hydrogen Energy 2007, 32 (17), 4238.
- 23 W. Su, L. Zhou, Y. Zhou, Carbon 2003, 41 (4), 861.
- 24 W. Su, L. Zhou, Y. Zhou, Chin. J. Chem. Eng. 2006, 14 (2), 266.
- 25 W. Su et al., Chem. Ind. Forest Prod. 2006, 26 (2), 49.
- 26 S.-Q. Yao et al., J. Yancheng Inst. Technol. Nat. Sci. Ed. 2007, 20 (2), 59.
- 27 F. Zhang et al., Bioresour. Technol. 2008, 99 (11), 4803.
- 28 H.-P. Zhang, L.-Y. Ye, L.-C. Yang, J. Xiamen Uni. (Nat. Sci.) 2006, 43 (6), 833.
- 29 M. Jordá-Beneyto et al., Carbon 2007, 45 (2), 293.
- 30 K. L. Lim, Hydrogen Storage on Activated Carbon Fibers and Carbon Nanotubes, Universiti Kebangsaan Malaysia, Bangi, Malaysia 2008.
- 31 K. Shindo, T. Kondo, M. Arakawa, Y. Sakurai, J. Alloys Compd. 2003, 359 (1–2), 267.
- 32 H. Takagi, H. Hatori, Y. Yamada, Chem. Lett. 2004, 33 (9), 1220.
- 33 S. Iijima, Nature 1991, 354 (6348), 56.
- 34 F. Darkrim, A. Aoufi, P. Malbrunot, D. Levesque, J. Chem. Phys. 2000, 112 (13), 5991.
- 35 Hydrogen Production and Storage: R&D Priorities and Gaps, International Energy Agency, Paris 2006 (Available from: http://www.iea.org/Textbase/papers/2006/hydrogen.pdf).
- 36 A. C. Dillon et al., FY 1999 Progress Report, DOE Hydrogen Program, U.S. DOE, Washington DC 1999.
- 37 X. Chen et al., in Proc. of the 3rd Materials Research Society Symp., Materials Research Society Press, Boston, MA 2002.
- 38 Y. Ye et al., Appl. Phys. Lett. 1999, 74 (16), 2307.
- 39 M. R. Smith Jr. et al, J. Phys. Chem. B 2003, 107 (16), 3752.
- 40 X. B. Wu, P. Chen, J. Lin, K. L. Tan, Int. J. Hydrogen Energy 2000, 25 (3), 261.
- 41 H. Zhu et al., Appl. Surf. Sci. 2001, 178 (1–4), 50.
- 42 Y. Chen et al., Appl. Phys. Lett. 2001, 78 (15), 2128.
- 43 A. Badzian, T. Badzian, E. Breval, A. Piotrowski, Thin Solid Films 2001, 398–399, 170.
- 44 N. M. Rodriguez, A. Chambers, R. T. K. Baker, Langmuir 1995, 11 (10), 3862.
- 45 R. T. K. Baker, Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam 2005.
- 46 D. J. Browning et al., Nano Lett. 2002, 2 (3), 201.
- 47 A. A. Volodin, P. V. Fursikov, B. P. Tarasov, Mg2NiHx as Procatalyst of Synthesis of Carbon Nanofibers, in NATO Security through Science Series A: Chemistry and Biology, Springer, New York 2007.
- 48 B. K. Gupta, O. N. Srivastava, Int. J. Hydrogen Energy 2008, 33 (12), 2975.
- 49 G. G. Tibbetts, G. P. Meisner, C. H. Olk, Carbon 2001, 39 (15), 2291.
- 50 B. J. Kim, S. J. Park, J. Colloid Interface Sci. 2007, 315 (2), 791.
- 51 B. J. Kim, Y. S. Lee, S. J. Park, Int. J. Hydrogen Energy 2008, 33 (15), 4112.
- 52 T. Heine, L. Zhechkov, S. Patchkovskii, G. Seifert, SPIE 2007 (Available online: http://spie.org/x13545.xml?ArticleID= x13545). DOI: 10.1117/2.1200704.0714
- 53 L. Zhechkov, T. Heine, G. Seifert, Int. J. Quantum Chem. 2006, 106 (6), 1375.
- 54 D. C. Elias et al., Science 2009, 323 (5914), 610.
- 55 L. Pan et al., Angew. Chem., Int. Ed. 2003, 42 (5), 542.
- 56 H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402 (6759), 276.
- 57 J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi, J. Am. Chem. Soc. 2004, 126 (18), 5666.
- 58 B. Panella, M. Hirscher, Adv. Mater. 2005, 17 (5), 538.
- 59 A. G. Wong-Foy, A. J. Matzger, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128 (11), 3494.
- 60 M. Dinca et al., J. Am. Chem. Soc. 2006, 128 (51), 16876.
- 61 Y. Liu et al., Langmuir 2008, 24 (9), 4772.
- 62 S. Cheng, S. Liu, Q. Zhao, J. Li, Energy Conversion Manage. 2009, 50 (5), 1314.
- 63 Y. Yan et al., Chem. Commun. 2009, 9, 1025.
- 64 L. Michel et al., Angew. Chem., Int. Ed. 2006, 45 (48), 8227.
- 65 Y. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128 (25), 8136.
- 66 Y. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128 (3), 726.
- 67 A. J. Lachawiec, Jr., G. Qi, R. T. Yang, Langmuir 2005, 21 (24), 11418.
- 68 A. D. Lueking, R. T. Yang, Appl. Catal., A 2004, 265 (2), 259.
- 69 Y. Li, R. T. Yang, J. Phys. Chem. B 2006, 110 (34), 17175.
- 70 U. Roland, T. Braunschweig, F. Roessner, J. Mol. Catal. A: Chem. 1997, 127 (1–3), 61.
- 71 Y. Y. Liu et al., Int. J. Hydrogen Energy 2007, 32 (16), 4005.
- 72 J. Dong et al., Int. J. Hydrogen Energy 2007, 32 (18), 4998.
- 73 M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. Van Dillen, K. P. De Jong, Appl. Phys. A: Mater. Sci. Process. 2001, 72 (5), 619.
- 74 M. Yu, S. Li, J. L. Falconer, R. D. Noble, Microporous Mesoporous Mater. 2008, 110 (2–3), 579.
- 75 L. J. Rovetto et al., Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures, in Basic Energy Sciences, U.S. Department of Energy, Washington, DC 2006, p. 629.
- 76 E. D. Sloan, Clathrate Hydrates of Natural Gases, 2nd ed., CRC Press, Boca Raton, FL 1998.
- 77 W. L. Mao, H. K. Mao, Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (3), 708.
- 78 W. L. Mao et al., Science 2002, 297 (5590), 2247.
- 79 S. Patchkovskii, J. S. Tse, Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (25), 14645.
- 80 H. Lee et al., Nature 2005, 434 (7034), 743.
- 81 R. Teitel, Hydrogen Storage in Glass Microspheres, Report BNL 51439, Brookhaven National Laboratories, U.S. DOE, Suffolk County, NY 1981.
- 82 R. J. Teitel, US Patent 4 302 217, 1981.
- 83 A. A. Akunets et al., Int. J. Hydrogen Energy 1994, 19 (8), 697.
- 84 D. B. Rapp, J. E. Shelby, J. Non-Cryst. Solids. 2004, 349 (1–3), 254.
- 85 G. G. Wicks, L. K. Heung, R. F. Schumacher, Am. Ceram. Soc. Bull. 2008, 87, 23-8.
- 86 R. C. Hibbeler, Mechanics of Materials, 5th ed., Prentice-Hall, Englewood Cliffs, NJ 2004.
- 87 R. T. Tsugawa, I. Moen, P. E. Roberts, P. C. Souers, J. Appl. Phys. 1976, 47 (5), 1987.
- 88 N. K. Zhevago, V. I. Glebov, Energy Conversion Manage. 2007, 48 (5), 1554.
- 89 A. Zaluska, L. Zaluski, J. O. Ström-Olsen, J. Alloys Compd. 1999, 288 (1–2), 217.
- 90 R. C. West, CRC Handbook of Chemistry and Physics, 62nd ed., CRC Press, Boca Raton FL 1982.
- 91 F. Baitalow et al., Thermochim. Acta 2002, 391 (1–2), 159.
- 92 H. Reule, M. Hirscher, A. Weißhardt, H. Kronmüller, J. Alloys Compd. 2000, 305 (1–2), 246.
- 93 I. Saita, T. Toshima, S. Tanda, T. Akiyama, Mater. Trans. 2006, 47 (3), 931.
- 94 J. Huot et al., J. Alloys Compd. 1999, 293, 495.
- 95 S. R. Johnson et al., Chem. Commun. 2005, 22, 2823.
- 96 J. Wang et al., Angew. Chem., Int. Ed. 2009, 48 (32), 5828.
- 97 O. Friedrichs et al., Acta Mater. 2006, 54 (1), 105.
- 98 G. Barkhordarian, T. Klassen, R. Bormann, Scr. Mater. 2003, 49 (3), 213.
- 99 G. Barkhordarian, T. Klassen, R. U. Bormann, J. Alloys Compd. 2004, 364 (1–2), 242.
- 100 L. Zaluski et al., J. Alloys Compd. 1995, 217 (2), 295.
- 101 W. Grochala, P. P. Edwards, Chem. Rev. 2004, 104 (3), 1283.
- 102 H. I. Schlesinger et al., J. Am. Chem. Soc. 1953, 75 (1), 215.
- 103 R. Aiello, M. A. Matthews, D. L. Reger, J. E. Collins, Int. J. Hydrogen Energy 1998, 23 (12), 1103.
- 104 T. Oku, M. Kuno, H. Kitahara, I. Narita, Int. J. Inorg. Mater. 2001, 3 (7), 597.
- 105 P. Wang et al., Appl. Phys. Lett. 2002, 80 (2), 318.
- 106 M. Oertel et al., Int. J. Hydrogen Energy 1987, 12 (4), 211.
- 107 Z. Xiong et al., Nat. Mater. 2008, 7 (2), 138.
- 108 P. Chen et al., Nature 2002, 420 (6913), 302. DOI: 10.1038/nature01210
- 109 Z. T. Xiong, G. T. Wu, H. J. Hu, P. Chen, Adv. Mater. 2004, 16 (17), 1522.
- 110 Z. T. Xiong, J. J. Hu, G. T. Wu, P. Chen, J. Alloys Compd. 2005, 395 (1–2), 209. DOI: 10.1016/j.jallcom.2004.10.062
- 111 Z. T. Xiong et al., J. Alloys Compd. 2005, 398 (1–2), 235. DOI: 10.1016/j.jallcom.2005.02.010
- 112 Y. F. Liu et al., J. Power Sources. 2006, 159 (1), 135. DOI: 10.1016/j.jpowsour.2006.04.006
- 113 K. Luo et al., Int. J. Hydrogen Energy 2009, 34 (19), 8101.
- 114 B. Karthikeyan, Chem. Phys. Lett. 2006, 432 (4–6), 513.
- 115 H. Lee, M. C. Nguyen, J. Ihm, Solid State Commun. 2008, 146 (9–10), 431.
- 116 I. Cabasso, Y. Yuan. FY 2008 Annual Progress Report, U.S. DOE, Washington DC 2008 (Available from: www.hydrogen.energy.gov/pdfs/progress08/iv_c_3_cabasso.pdf).