Discovery of 2,4-diaminopyrimidine derivatives targeting p21-activated kinase 4: Biological evaluation and docking studies
Qiaohua Qin
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorTianxiao Wu
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorWenbo Yin
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorYixiang Sun
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorXiangyu Zhang
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorRuifeng Wang
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorJing Guo
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorCorresponding Author
Dongmei Zhao
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Correspondence Dongmei Zhao, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, 110016 Shenyang, China.
Email: [email protected]
Search for more papers by this authorMaosheng Cheng
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorQiaohua Qin
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorTianxiao Wu
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorWenbo Yin
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorYixiang Sun
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorXiangyu Zhang
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorRuifeng Wang
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorJing Guo
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorCorresponding Author
Dongmei Zhao
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Correspondence Dongmei Zhao, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, 110016 Shenyang, China.
Email: [email protected]
Search for more papers by this authorMaosheng Cheng
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
Search for more papers by this authorAbstract
In this study, novel 2,4-diaminopyrimidine derivatives targeting p21-activated kinase 4 (PAK4) were discovered and evaluated for their biological activity against PAK4. Among the derivatives studied, promising compounds A2, B6, and B8 displayed the highest inhibitory activities against PAK4 (IC50 = 18.4, 5.9, and 20.4 nM, respectively). From the cellular assay, compound B6 exhibited the highest potency with an IC50 value of 2.533 μM against A549 cells. Some compounds were selected for computational ADME (absorption, distribution, metabolism, and elimination) properties and molecular docking studies against PAK4. The detailed structure–activity relationship based on the biochemical activities and molecular docking studies were explored. According to the docking studies, compound B6 had the lowest docking score (docking energy: −7.593 kcal/mol). The molecular docking simulation indicated the binding mode between compound B6 and PAK4. All these results suggest compound B6 as a useful candidate for the development of a PAK4 inhibitor.
CONFLICT OF INTEREST
The authors declare that there are no conflicts of interests.
Supporting Information
Filename | Description |
---|---|
ardp202000097-sup-0001-ArchPharm_SupplMat_InChI_2020_1.doc57.5 KB | Supporting information |
ardp202000097-sup-0002-supporting_information.doc5.6 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1P. Cohen, Nat. Rev. Drug Discov. 2002, 1, 309. https://doi.org/10.1038/nrd773
- 2J. A. Bridges, Chem. Rev. 2001, 101, 2541. https://doi.org/10.1021/cr000250y
- 3J. Zhang, P. L. Yang, N. S. Gray, Nat. Rev. Cancer 2009, 9, 28. https://doi.org/10.1038/nrc2559
- 4R. Kumar, A. E. Gururaj, C. J. Barnes, Nat. Rev. Cancer 2006, 6, 459. https://doi.org/10.1038/nrc1892
- 5M. G. Callow, F. Clairvoyant, S. Zhu, B. Schryver, D. B. Whyte, J. R. Bischoff, B. Jallal, T. Smeal, J. Biol. Chem. 2002, 277, 550. https://doi.org/10.1074/jbc.M105732200
- 6M. G. Callow, S. Zozulya, M. L. Gishizky, B. Jallal, T. Smeal, J. Cell Sci. 2005, 118, 1861. https://doi.org/10.1242/jcs.02313
- 7M. S. Cammarano, T. Nekrasova, B. Noel, A. Minden, Mol. Cell. Biol. 2005, 25, 9532. https://doi.org/10.1128/MCB.25.21.9532-9542.2005
- 8Y. Liu, H. Xiao, Y. Tian, T. Nekrasova, X. Hao, H. J. Lee, N. Suh, C. S. Yang, A. Minden, Mol. Cancer Res. 2008, 6, 1215. https://doi.org/10.1158/1541-7786.MCR-08-0087
- 9R. H. Daniels, G. M. Bokoch, Trends Biochem. Sci. 1999, 24, 350. https://doi.org/10.1016/S0968-0004(99)01442-5
- 10U. G. Knaus, G. M. Bokoch, Int. J. Biochem. Cell Biol. 1998, 30, 857. https://doi.org/10.1016/s1357-2725(98)00059-4
- 11M. A. Sells, J. Chernoff, Trends Cell Biol. 1997, 7, 162. https://doi.org/10.1016/S0962-8924(97)01003-9
- 12D. Z. Ye, J. Field, Cell. Logist. 2012, 2, 1056. https://doi.org/10.4161/cl.21882
10.4161/cl.21882 Google Scholar
- 13J. Rudolph, L. J. Murray, C. O. Ndubaku, T. O'Brien, E. M. Blackwood, W. Wang, I. Aliagas, L. Gazzard, J. J. Crawford, J. Drobnick, W. Lee, X. Zhao, K. P. Hoeflich, D. A. Favor, P. Dong, H. Zhang, C. E. Heise, A. Oh, C. C. Ong, H. La, P. Chakravarty, C. Chan, D. Jakubiak, J. Epler, S. Ramaswamy, R. Vega, G. Cain, D. Diaz, Y. Zhong, J. Med. Chem. 2016, 59, 5520. https://doi.org/10.1021/acs.jmedchem.6b00638
- 14C. Hao, F. Zhao, H. Song, J. Guo, X. Li, X. Jiang, R. Huan, S. Song, Q. Zhang, R. Wang, K. Wang, Y. Pang, T. Liu, T. Lu, W. Huang, J. Wang, B. Lin, Z. He, H. Li, F. Li, D. Zhao, M. Cheng, J. Med. Chem. 2018, 61, 265. https://doi.org/10.1038/s43018-019-0003-0
- 15G. Abril-Rodriguez, D. Y. Torrejon, W. Liu, J. M. Zaretsky, T. S. Nowicki, J. Tsoi, C. Puig-Saus, I. Baselga-Carretero, E. Medina, M. J. Quist, A. J. Garcia, W. Senapedis, E. Baloglu, A. Kalbasi, G. Cheung-Lau, B. Berent-Maoz, B. Comin-Anduix, S. Hu-Lieskovan, C.-Y. Wang, C. S. Grasso, A. Ribas, Nat. Cancer 2020, 1, 46. https://doi.org/10.1038/s43018-019-0003-0
- 16U. T. Rüegg, G. Burgess, Trends Pharmacol. Sci. 1989, 10, 218. https://doi.org/10.1016/0165-6147(89)90263-0
- 17M. W. Karaman, S. Herrgard, D. K. Treiber, P. Gallant, C. E. Atteridge, B. T. Campbell, K. W. Chan, P. Ciceri, M. I. Davis, P. T. Edeen, R. Faraoni, M. Floyd, J. P. Hunt, D. J. Lockhart, Z. V. Milanov, M. J. Morrison, G. Pallares, H. K. Patel, S. Pritchard, L. M. Wodicka, P. P. Zarrinkar, Nat. Biotechnol. 2008, 26, 127. https://doi.org/10.1038/nbt1358
- 18B. W. Murray, C. Guo, J. Piraino, J. K. Westwick, C. Zhang, J. Lamerdin, E. Dagostino, D. Knighton, C.-M. Loia, M. Zager, E. Kraynov, I. Popoff, J. G. Christensen, R. Martinez, S. E. Kephart, J. Marakovits, S. Karlicek, S. Bergqvist, T. Smeal, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 9446. https://doi.org/10.1073/pnas.0911863107
- 19O. Abu Aboud, C.-H. Chen, W. Senapedis, E. Baloglu, C. Argueta, R. H. Weiss, Mol. Cancer Ther. 2016, 15, 2119. https://doi.org/10.1158/1535-7163.mct-16-0197
- 20S. T. Staben, J. A. Feng, K. Lyle, M. Belvin, J. Boggs, J. D. Burch, C. Chua, H. Cui, A. G. DiPasquale, L. S. Friedman, C. Heise, H. Koeppen, A. Kotey, R. Mintzer, A. Oh, D. A. Roberts, L. Rouge, J. Rudolph, C. Tam, W. Wang, Y. Xiao, A. Young, Y. Zhang, K. P. Hoeflich, J. Med. Chem. 2014, 57, 1033. https://doi.org/10.1021/jm401768t
- 21J. J. Crawford, W. Lee, I. Aliagas, S. Mathieu, K. Hoeflich, W. Zhou, W. Wang, L. Rouge, L. Murray, H. La, N. Liu, P. W.-J. Fan, J. Cheong, C. Heise, S. Ramaswamy, R. Mintzer, Y. Liu, Q. Chao, J. Rudolph, J. Med. Chem. 2015, 58, 5121. https://doi.org/10.1021/acs.jmedchem.5b00572
- 22F. H. Jung, P. Ple, US 2007099335, 2007.
- 23L. Wang, X. Zhou, M. Xiao, N. Jiang, F. Liu, W. Zhou, X. Wang, Z. Zheng, S. Li, Med. Chem. Lett 2014, 24, 3739. https://doi.org/10.1016/j.bmcl.2014.07.001
- 24Y. S. Lee, Y. H. Kim, Synth. Commun. 1999, 29, 1503. https://doi.org/10.1080/00397919908086130
- 25N. Pobsuk, T. U. Paracha, N. Chaichamnong, N. Salaloy, P. Suphakun, S. Hannongbua, K. Choowongkomon, D. Pekthong, K. Chootip, K. Ingkaninan, M. P. Gleeson, Bioorg. Med. Chem. Lett. 2019, 29, 267. https://doi.org/10.1016/j.bmcl.2018.11.043
- 26T. Wang, G. Bemis, B. Hanzelka, H. Zuccola, M. Wynn, C. S. Moody, J. Green, C. Locher, A. Liu, H. Gao, Y. Xu, S. Wang, J. Wang, Y. L. Bennani, J. A. Thomson, U. Müh, ACS Med. Chem. Lett. 2017, 8, 1224. https://doi.org/10.1021/acsmedchemlett.7b00239
- 27T. T. Wager, R. Y. Chandrasekaran, X. Hou, M. D. Troutman, P. R. Verhoest, A. Villalobos, Y. Will, ACS Chem. Neurosci. 2010, 1, 420. https://doi.org/10.1021/cn100007x
- 28P. D. Leeson, B. Springthorpe, Nat. Rev. Drug. Discov. 2007, 6, 881. https://doi.org/10.1038/nrd2445
- 29C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Deliv. Rev. 2011, 46, 3. https://doi.org/10.1016/j.addr.2012.09.019
- 30P. Wu, T. E. Nielsen, M. H. Clausen, Drug Discov. Today 2016, 21, 5. https://doi.org/10.1016/j.drudis.2015.07.008
- 31G. M. Keserü, G. M. Makara, Nat. Rev. Drug Discov. 2009, 8, 203. https://doi.org/10.1038/nrd2796