Biodegradable zinc-based materials with a polymer coating designed for biomedical applications
Renáta Oriňaková
Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, KoŠice, Slovakia
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Contribution: Conceptualization (lead), Funding acquisition (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Radka Gorejová
Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, KoŠice, Slovakia
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Correspondence
Radka Gorejová, Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, Košice 041 54, Slovakia.
Email: [email protected], [email protected]
Contribution: Investigation (equal), Visualization (lead), Writing - original draft (equal)
Search for more papers by this authorViktória Čákyová
Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, KoŠice, Slovakia
Contribution: Funding acquisition (supporting), Investigation (equal)
Search for more papers by this authorMiroslav Džupon
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (equal), Writing - original draft (supporting)
Search for more papers by this authorMiriam Kupková
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (equal), Writing - original draft (supporting)
Search for more papers by this authorTibor Sopčák
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (equal)
Search for more papers by this authorKadir Özaltin
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Contribution: Investigation (equal)
Search for more papers by this authorMatej Mičušík
Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorOndrej Petruš
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (supporting)
Search for more papers by this authorMária Omastová
Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia
Contribution: Supervision (supporting), Validation (supporting)
Search for more papers by this authorMarek Vojtko
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (supporting)
Search for more papers by this authorPetr Sáha
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Contribution: Funding acquisition (equal), Resources (equal), Supervision (supporting)
Search for more papers by this authorRenáta Oriňaková
Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, KoŠice, Slovakia
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Contribution: Conceptualization (lead), Funding acquisition (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Radka Gorejová
Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, KoŠice, Slovakia
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Correspondence
Radka Gorejová, Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, Košice 041 54, Slovakia.
Email: [email protected], [email protected]
Contribution: Investigation (equal), Visualization (lead), Writing - original draft (equal)
Search for more papers by this authorViktória Čákyová
Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, KoŠice, Slovakia
Contribution: Funding acquisition (supporting), Investigation (equal)
Search for more papers by this authorMiroslav Džupon
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (equal), Writing - original draft (supporting)
Search for more papers by this authorMiriam Kupková
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (equal), Writing - original draft (supporting)
Search for more papers by this authorTibor Sopčák
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (equal)
Search for more papers by this authorKadir Özaltin
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Contribution: Investigation (equal)
Search for more papers by this authorMatej Mičušík
Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorOndrej Petruš
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (supporting)
Search for more papers by this authorMária Omastová
Slovak Academy of Sciences, Polymer Institute, Bratislava, Slovakia
Contribution: Supervision (supporting), Validation (supporting)
Search for more papers by this authorMarek Vojtko
Slovak Academy of Sciences, Institute of Materials Research, KoŠice, Slovakia
Contribution: Investigation (supporting)
Search for more papers by this authorPetr Sáha
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
Contribution: Funding acquisition (equal), Resources (equal), Supervision (supporting)
Search for more papers by this authorAbstract
Over the last decades, biodegradable metals have gained popularity for biomedical applications due to their ability to assist in tissue healing. These materials degrade in vivo, while the corrosion products formed are either absorbed or excreted by the body, and no further surgical intervention is required for removal. Intensive research has been carried out mainly on degradable biomaterials based on Mg and Fe. In recent years, zinc-based degradable biomaterials have been explored by the biomedical community for their intrinsic physiological relevance, desirable biocompatibility, intermediate degradation rate, tuneable mechanical properties and pro-regeneration properties. Since pure Zn does not exhibit sufficient mechanical properties for orthopedic applications, various Zn alloys with better properties are being developed. In this work, the combined effect of minor Fe addition to Zn and a polyethyleneglycol (PEG) coating on the surface morphology, degradation, cytotoxicity and mechanical properties of Zn-based materials was studied. There are several studies regarding the influence of the production of Zn alloys, but the effect of polymer coating on the properties of Zn-based materials has not been reported yet. A positive effect of Fe addition and polymer coating on the degradation rate and mechanical properties was observed. However, a reduction in biocompatibility was also detected.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
Supporting Information
Filename | Description |
---|---|
app54773-sup-0001-Tables.docxWord 2007 document , 14.9 KB | Table S1. Elemental composition at different surface sites of sintered Zn samples. EDX data were collected at area and points identified in Figure 2b. Table S2. Elemental composition at different surface sites of the sintered Zn-1Fe sample. EDX data were collected at the area and points identified in Figure 3b. Table S3. Elemental composition at different surface sites of the sintered Zn-2Fe sample. EDX data were collected at area and points identified in Figure 4b. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. Wei, J.-X. Ma, L. Xu, X.-S. Gu, X.-L. Ma, Mil. Med. Res. 2020, 7, 54.
- 2P. Habibovic, Tissue Eng. Part A 2017, 23–24, 1295.
- 3M. Y. Kolawole, J. O. Aweda, S. Abdulkareem, S. A. Bello, Eur. J. Mater. Sci. Eng. 2020, 5, 115.
- 4B. Jia, H. Yang, Z. Zhang, X. Qu, X. Jia, Q. Wu, Y. Han, Y. Zheng, K. Dai, Bioact. Mater. 2021, 6, 1588.
- 5K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, A. Cao, D. Markwell, K. Ostrikov, K. Bazaka, Materials 2017, 10, 884.
- 6J. Zhou, X. Guo, Q. Zheng, Y. Wu, F. Cui, B. Wu, Colloids Surf. B. Biointerfaces 2017, 152, 124.
- 7G. K. Levy, J. Goldman, E. Aghion, Metals 2017, 7, 402.
10.3390/met7100402 Google Scholar
- 8H. Kabir, K. Munir, C. Wen, Y. Li, Bioact. Mater. 2021, 6, 836.
- 9D. Vojtěch, J. Kubásek, J. Čapek, I. Pospíšilová, Mater. Technol. 2015, 49, 877.
- 10Q. Dai, S. Peng, Z. Zhang, Y. Liu, M. Fan, F. Zhao, Front. Bioeng. Biotechnol. 2021, 9, 635338.
- 11Y. Su, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang, Y. Zheng, D. Zhu, Trends Biotechnol. 2019, 37, 428.
- 12M. Heiden, E. Walker, L. Stanciu, J. Biotechnol. Biomater. 2015, 5, 178.
- 13X. Xiao, E. Liu, J. Shao, S. Ge, J. Appl. Biomater. Funct. Mater. 2021, 19, 22808000211062407.
- 14H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, Y. Zheng, Nat. Commun. 2020, 11, 401.
- 15E. Mostaed, M. Sikora-Jasinska, J. W. Drelich, M. Vedani, Acta Biomater. 2018, 71, 1.
- 16A. Kafri, S. Ovadia, J. Goldman, J. Drelich, E. Aghion, Metals 2018, 8, 153.
10.3390/met8030153 Google Scholar
- 17Z. Orsagova Kralova, R. Gorejova, R. Oriňakova, M. Petrakova, A. Oriňak, M. Kupkova, M. Hrubovčakova b, T. Sopčak b, M. Balaž c, I. Maskalova d, A. Kovalcíikova, K. Koval, Prog. Nat. Sci.: Mater. Int. 2021, 31, 279.
- 18J. Lin, X. Tong, Q. Sun, Y. Luan, D. Zhang, Z. Shi, K. Wang, J. Lin, Y. Li, M. Dargusch, C. Wen, Acta Biomater. 2020, 115, 432.
- 19A. H. Yusop, A. A. Bakir, N. A. Shaharom, M. R. Abdul Kadir, H. Hermawan, Int. J. Biomater. 2012, 2012, 641430.
- 20M. Bobby Kannan, C. Moore, S. Saptarshi, S. Somasundaram, M. Rahuma, A. L. Lopata, Sci. Rep. 2017, 7, 15605.
- 21M. Krystýnová, P. Doležal, S. Fintová, M. Březina, J. Zapletal, J. Wasserbauer, Metals 2017, 7, 396.
10.3390/met7100396 Google Scholar
- 22Y. Li, P. Pavanram, J. Zhou, K. Lietaert, F. S. L. Bobbert, Y. Kubo, M. A. Leeflang, H. Jahr, A. A. Zadpoor, Biomater. Sci. 2020, 8, 2404.
- 23B. Jia, Y. Hongtao Yang, Z. Z. Han, Q. Xinhua, Y. Zhuang, W. Qiang, Y. Zheng, K. Dai, Acta Biomater. 2020, 108, 358.
- 24T. Huang, Y. Zheng, Y. Han, Regen. Biomater. 2016, 3, 205.
- 25Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, G. Yuan, Mater. Des. 2017, 117, 84.
- 26X. Shao, X. Wang, F. Xu, T. Dai, J. G. Zhou, J. Liu, K. Song, L. Tian, B. Liu, Y. Liu, Bioact. Mater. 2022, 7, 154.
- 27Q. Yu, X. Sun, J. Zhao, L. Zhao, Y. Chen, L. Fan, Z. Li, Y. Sun, M. Wang, F. Wang, Nutr. Metab. 2019, 16, 73.
10.1186/s12986-019-0395-y Google Scholar
- 28J. M. Seitz, M. Durisin, J. Goldman, J. W. Drelich, Adv. Healthc. Mater. 2015, 4, 1915.
- 29R. Oriňaková, R. Gorejová, Z. Orságová Králová, L. Haverová, A. Oriňak, I. Maskaľová, M. Kupková, M. Džupon, M. Baláž, M. Hrubovčáková, T. Sopčák, A. Zubrik, M. Oriňak, Appl. Surf. Sci. 2020, 505, 144634.
- 30L. Haverová, R. Oriňaková, A. Oriňak, R. Gorejová, M. Baláž, P. Vanýsek, M. Kupková, M. Hrubovčáková, P. Mudroň, J. Radoňák, Z. Orságová Králová, A. M. Turoňová, Metals 2018, 8, 499.
- 31R. Oriňaková, R. Gorejová, J. Macko, A. Oriňak, M. Kupková, M. Hrubovčáková, J. Ševc, R. M. Smith, Appl. Surf. Sci. 2019, 475, 515.
- 32R. Oriňaková, R. Gorejová, M. Petráková, Z. Orságová Králová, A. Oriňak, M. Kupková, M. Hrubovčáková, M. Podobová, M. Baláž, R. M. Smith, Materials 2020, 13, 4134.
- 33R. Gorejová, I. Šišoláková, P. Cipa, R. Džunda, T. Sopčák, A. Oriňak, R. Oriňaková, Materials 2021, 14, 4983.
- 34 ASTM, Standard Guide for Laboratory Immersion Corrosion Testing of Metals, ASTM, West Conshohocken, PA 2012.
- 35 ISO 8407:2009 (E), Corrosion of Metals and Alloys-Removal of Corrosion Products from Corrosion Test Specimens, International Standard ISO 8407, 2nd ed., International Standard Organisation, Geneva, Switzerland 2009.
- 36Int. Stand. 2009, 10993-5, 46.
- 37R. Cuscó, E. Alarcón-Lladó, J. Ibánez, L. Artús, J. Jiménez, B. Wang, M. J. Callahan, Phys. Rev. B 2007, 75, 165202.
- 38J. Gao, X. Zhang, Y. Sun, Q. Zhao, D. Yu, Nanotechnology 2010, 21, 245703.
- 39C. Li, J. Lv, S. Yao, J. Hu, Z. Liang, Nucl. Inst. Methods Phys. Res. B 2013, 295, 11.
- 40J. Maxfield, I. W. Shepherd, Polymer 1975, 16, 505.
- 41A. Vervaeck, T. Monteyne, L. Saerens, T. De Beer, J. P. Remon, C. Vervaet, Eur. J. Pharm. Biopharm. 2014, 88, 472.
- 42M. Kozielski, J. Mol. Liq. 2006, 128, 105.
- 43B. Bozzini, L. D'Urzo, C. Mele, V. Romanello, J. Mater. Sci. Mater. Electron. 2006, 17, 915.
- 44T. Miyazawa, K. Fukushima, Y. Ideguchi, J. Chem. Phys. 1962, 37, 2764.
- 45D. Yamini, G. Devanand Venkatasubbu, J. Kumar, V. Ramakrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 117, 299.
- 46 Avantage software 6.5.0, XPS knowledge database. ThermoFisher Scientific, UK.
- 47S. J. Kerber, T. L. Barr, G. P. Mann, W. A. Brantley, E. Papazoglou, J. C. Mitchell, J. Mater. Eng. Perform. 1998, 7, 329.
- 48Z.-Z. Shi, X.-X. Gao, H.-T. Chen, X.-F. Liu, A. Li, H.-J. Zhang, L.-N. Wang, Mater. Sci. Eng. C 2020, 116, 111197.
- 49X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, Y. Zheng, Mater. Des. 2016, 94, 95.
- 50H. F. Li, X. H. Xie, Y. F. Zheng, Y. Cong, F. Y. Zhou, K. J. Qiu, X. Wang, S. H. Chen, L. Huang, L. Tian, L. Qin, Sci. Rep. 2015, 5, 10719.
- 51M. Salama, M. F. Vaz, R. Colaço, C. Santos, M. Carmezim, J. Funct. Biomater. 2022, 13, 72.
- 52R. Gorejová, L. Haverová, R. Oriňaková, A. Oriňak, M. Oriňak, J. Mater. Sci. 2019, 54, 1913.
- 53Y. Xu, Y. Xu, W. Zhang, M. Li, H.-P. Wendel, J. Geis-Gerstorfer, P. Li, G. Wan, S. Xu, T. Hu, Front. Chem. 2022, 10, 860040.
- 54A. Kafri, S. Ovadia, G. Yosafovich-Doitch, E. Aghion, J. Mater. Sci. Mater. Med. 2018, 29, 94.
- 55A. Sagasti, V. Palomares, J. M. Porro, I. Orúe, M. B. Sánchez-Ilárduya, A. C. Lopes, J. Gutiérrez, Materials 2019, 13, 57.
- 56P. Li, C. Schille, E. Schweizer, F. Rupp, A. Heiss, C. Legner, U. E. Klotz, J. Geis-Gerstorfer, L. Scheideler, Int. J. Mol. Sci. 2018, 19, 755.
- 57J. Čapek, J. Kubasek, J. Pinc, J. Fojt, S. Krajewski, F. Rupp, P. Li, Mater. Sci. Eng. C 2021, 122, 111924.
- 58Y. Qi, X. Li, Y. He, D. Zhang, J. Ding, ACS Appl. Mater. Interfaces 2019, 11, 202.
- 59A. H. Md Yusop, N. M. Daud, H. Nur, M. R. A. Kadir, H. Hermawan, Sci. Rep. 2015, 5, 11194.
- 60X. Liu, S. Chen, H. Ma, G. Liu, L. Shen, Appl. Surf. Sci. 2006, 253, 814.
- 61R. M. Souto, Y. González-García, A. C. Bastos, A. M. Simões, Corros. Sci. 2007, 49, 4568.
- 62Z. Zhen, T.-F. Xi, Y.-F. Zheng, Trans. Nonferrous Met. Soc. China 2013, 23, 2283.
- 63J. P. Eubeler, M. Bernhard, T. P. Knepper, TrAC Trends Anal. Chem. 2010, 29, 84.
- 64J. Ulbricht, R. Jordan, R. Luxenhofer, Biomaterials 2014, 35, 4848.
- 65E. Guilminot, F. Dalard, C. Degrigny, Corros. Sci. 2002, 44, 2199.
- 66S. E. Faidi, G. Jones, J. D. Scantlebury, Electrochim. Acta 1987, 32, 947.
- 67H. Boudellioua, Y. Hamlaoui, L. Tifouti, F. Pedraza, Appl. Surf. Sci. 2019, 473, 449.