Reduced graphene oxide catalytically enhances the rate of cyanate ester curing under variable frequency microwave heating
Matthew Warner
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Formal analysis (lead), Writing - original draft (lead)
Search for more papers by this authorTiffany Jeng
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorSonya Ayar
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Investigation (supporting)
Search for more papers by this authorShraddha Sekhar
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Investigation (supporting)
Search for more papers by this authorDelfina Marin
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Investigation (supporting)
Search for more papers by this authorAnthony Engler
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Formal analysis (supporting)
Search for more papers by this authorDanielle Coverdell
Department of Energy's Kansas City, National Security Campus, Honeywell FM&T, 14520 Botts Road, Kansas City, 64147 USA
Contribution: Conceptualization (lead), Funding acquisition (supporting), Investigation (supporting)
Search for more papers by this authorJackson Ham
Department of Energy's Kansas City, National Security Campus, Honeywell FM&T, 14520 Botts Road, Kansas City, 64147 USA
Contribution: Conceptualization (supporting), Formal analysis (supporting), Funding acquisition (supporting)
Search for more papers by this authorCorresponding Author
Paul Kohl
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Correspondence
Paul Kohl, Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr., Atlanta, GA 30332-0100, USA.
Email: [email protected]
Contribution: Conceptualization (supporting), Formal analysis (supporting), Project administration (lead), Supervision (lead), Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorMatthew Warner
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Formal analysis (lead), Writing - original draft (lead)
Search for more papers by this authorTiffany Jeng
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorSonya Ayar
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Investigation (supporting)
Search for more papers by this authorShraddha Sekhar
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Investigation (supporting)
Search for more papers by this authorDelfina Marin
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Investigation (supporting)
Search for more papers by this authorAnthony Engler
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Contribution: Formal analysis (supporting)
Search for more papers by this authorDanielle Coverdell
Department of Energy's Kansas City, National Security Campus, Honeywell FM&T, 14520 Botts Road, Kansas City, 64147 USA
Contribution: Conceptualization (lead), Funding acquisition (supporting), Investigation (supporting)
Search for more papers by this authorJackson Ham
Department of Energy's Kansas City, National Security Campus, Honeywell FM&T, 14520 Botts Road, Kansas City, 64147 USA
Contribution: Conceptualization (supporting), Formal analysis (supporting), Funding acquisition (supporting)
Search for more papers by this authorCorresponding Author
Paul Kohl
Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr, Atlanta, Georgia, USA
Correspondence
Paul Kohl, Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Dr., Atlanta, GA 30332-0100, USA.
Email: [email protected]
Contribution: Conceptualization (supporting), Formal analysis (supporting), Project administration (lead), Supervision (lead), Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorAbstract
The curing of Lonza Primaset PT-30 novolac cyanate ester resin and EPON 826 bisphenol-A diglycidyl ether were investigated using convective thermal heating and variable frequency microwave (VFM) heating. The addition of 1 part per hundred reduced graphene oxide (r-GO) to PT-30 novolac cyanate ester increased the VFM cure rate compared to thermal heating. Curing it at 160°C for 240 min with VFM heating resulted in a 55% degree of cure compared to a 26% degree of cure with thermal heating. This observed VFM rate enhancement is due to selective microwave heating of the r-GO particles in the resin resulting in increased r-GO catalytic activity toward cyanate ester curing. It is both a thermal and catalytic effect, the latter of which is absent when r-GO is added to a bisphenol-A diglycidyl ether resin with o-phenylenediamine hardener. Impurities present in the PT-30 matrix do not appear to contribute to its overall cure kinetics, nor do they participate in the observed VFM rate enhancement.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
app53887-sup-0001-supinfo.docxWord 2007 document , 575.3 KB | Data S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. J. Mumby, G. E. Johnson, Proc. 19th Electr. Electr. Insulat. Conf 1989, Chicago, IL, USA, IEEE, p. 263.
- 2L. J. Buckley, A. W. Snow, J. Vac. Sci. Technol. B 1997, 15, 259.
- 3M. Ariraman, R. S. Kumar, M. Alagar, RSC Adv. 2014, 4, 57759.
- 4Z. J. Zhang, W. W. Xu, L. Yuan, Q. B. Guan, G. Z. Liang, A. J. Gu, J. Appl. Polym. Sci. 2018, 135, 46587.
- 5G. La Delfa, W. Voigt, M. Abgottspon, High Temperature And Flame Retardant Cyanate Ester Resins For Aerospace Applications, Lonza, Brindisi, Italy 2010, p. 8.
- 6M. L. Ramirez, R. Walters, R. E. Lyon, E. P. Savitski, Polym. Degrad. Stab. 2002, 78, 73.
- 7K. Humer, R. Prokopec, R. K. Maix, H. Fillunger, H. W. Weber, Fusion Eng. Des. 2009, 84, 960.
- 8T. H. Ho, H. J. Hwang, J. Y. Shieh, M. C. Chung, React. Funct. Polym. 2009, 69, 176.
- 9L. Boogh, R. Mezzenga, in Comprehensive Composite Materials (Eds: A. Kelly, C. Zweben), Elsevier Science, Ltd., Amsterdam, Netherlands 2000, p. 671.
10.1016/B0-08-042993-9/00221-7 Google Scholar
- 10E. Ruiz, F. Trochu, Compos. A: Appl. Sci. Manuf. 2005, 36, 806.
- 11A. Bajpai, P. Saxena, K. Kunze, Polymer 2020, 12, 1725.
- 12C. M. Gomez, I. B. Recalde, M. Mondragon, Eur. Polym. J. 2005, 41, 2734.
- 13D. R. Wang, D. F. Hou, Z. W. Chen, H. B. Ma, C. D. Huang, L. Yang, High Perform. Polym. 2020, 32, 775.
- 14K. Izu, Y. Tokoro, T. Oyama, Polym. J. 2020, 52, 1245.
- 15A. Oseiowusu, G. C. Martin, J. T. Gotro, Polym. Eng. Sci. 1991, 31, 1604.
- 16S. Chandrasekaran, E. B. Duoss, M. A. Worsley, J. P. Lewicki, J. Mater. Chem. A 2018, 6, 853.
- 17W. F. Li, G. Z. Liang, W. L. Xin, Polym. Int. 2004, 53, 869.
- 18A. Fainleib, O. Grigoryeva, O. Starostenko, A. Vashchuk, S. Rogalsky, D. Grande, Express Polym Lett 2016, 10, 722.
- 19A. Vashchuk, A. R. de Anda, O. Starostenko, O. Grigoryeva, P. Sotta, S. Rogalsky, P. Smertenko, A. Fainleib, D. Grande, Polymer 2018, 148, 14.
- 20A. Vashchuk, A. M. Fainleib, O. Starostenko, D. Grande, Express Polym Lett 2018, 12, 898.
- 21G. Vonhagens, Acta Anat. 1981, 111, 55.
- 22M. Wloch, U. Ostaszewska, J. Datta, J. Polym. Environ. 2019, 27, 1367.
- 23K. Tanaka, S. A. B. Allen, P. A. Kohl, IEEE Trans. Compon. Packag. Technol. 2007, 30, 472.
- 24M. R. Rosana, J. Hunt, A. Ferrari, T. A. Southworth, Y. C. Tao, A. E. Stiegman, G. B. Dudley, J. Org. Chem. 2014, 79, 7437.
- 25F. Chemat, D. C. Esveld, M. Poux, J. L. Di-Martino, J. Microw. Power Electromagn. Energy. 1998, 33, 88.
- 26R. L. Hubbard, D. R. Tyler, B. Thompson, J. Appl. Polym. Sci. 2021, 138, 49635.
- 27R. L. Hubbard, S. M. Strain, C. Willemsen, D. R. Tyler, J. Appl. Polym. Sci. 2016, 133, 44222.
- 28S. J. Zhou, M. C. Hawley, Compos. Struct. 2003, 61, 303.
- 29D. A. C. Stuerga, P. Gaillard, J. Microw. Power Electromagn. Energy. 1996, 31, 101.
- 30D. A. C. Stuerga, P. Gaillard, J. Microw. Power Electromagn. Energy. 1996, 31, 87.
- 31R. L. Hubbard, IEEE Trans. Electron Devices 2021, 68, 3170.
- 32H. Matsutani, T. Hattori, M. Ohe, T. Ueno, R. L. Hubbard, Z. Fathi, J. Photopolym. Sci. Technol. 2005, 18, 327.
- 33R. V. Tanikella, T. Sung, S. A. Bidstrup-Allen, P. A. Kohl, IEEE Trans. Compon. Packag. Technol. 2006, 29, 411.
- 34R. V. Tanikella, S. A. B. Allen, P. A. Kohl. 8th Int. Adv. Packag. Mater. Symp. (Cat. No.02TH8617). 2002.
- 35W. C. Sun, P. M. Guy, J. H. Jahngen, E. F. Rossomando, E. G. E. Jahngen, J. Org. Chem. 1988, 53, 4414.
- 36E. G. E. Jahngen, R. R. Lentz, P. S. Pesheck, P. H. Sackett, J. Org. Chem. 1991, 189, 469.
- 37C. O. Kappe, B. Pieber, D. Dallinger, Angew. Chem. Int. Ed. 2013, 52, 1088.
- 38G. B. Dudley, A. E. Stiegman, Chem. Rec. 2018, 18, 381.
- 39S. Horikoshi, M. Kamata, T. Sumi, N. Serpone, Int. J. Hydrog. Energy 2016, 41, 12029.
- 40X. L. Zhang, D. O. Hayward, D. M. P. Mingos, Catal. Lett. 2003, 88, 33.
- 41D. Bogdal, M. Lukasiewicz, J. Pielichowski, A. Miciak, S. Bednarz, Tetrahedron 2003, 59, 649.
- 42G. B. Dudley, R. Richert, A. E. Stiegman, Chem. Sci. 2015, 6, 2144.
- 43M. A. Frasso, A. E. Stiegman, G. B. Dudley, Chem. Commun. 2020, 56, 11247.
- 44Y. C. Tao, C. Teng, T. D. Musho, L. van de Burgt, E. Lochner, W. T. Heller, G. F. Strouse, G. B. Dudley, A. E. Stiegman, J. Phys. Chem. B 2021, 125, 2146.
- 45C. Duangkamol, P. Batsomboon, A. E. Stiegman, G. B. Dudley, Chemistry 2019, 14, 2594.
- 46Y. Wu, J. Gagnier, G. B. Dudley, A. E. Stiegman, Chem. Commun. 2016, 52, 11281.
- 47M. Sang, J. Shin, K. Kim, K. J. Yu, Nanomaterials 2019, 9, 374.
- 48D. Stuerga, in Microwaves in Organic Synthesis Part I: Fundamental Aspects of Microwave Irradiation in Organic Chemistry (Eds: A. D. l. Hoz, A. Loupy), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2012, p. 1.
- 49T. Besson, C. O. Kappe, in Microwaves in Organic Synthesis Part I: Fundamental Aspects of Microwave Irradiation in Organic Chemistry (Eds: A. D.l. Hoz, A. Loupy), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2012, p. 297.
- 50J. M. Kim, D. Ko, J. Oh, J. Lee, T. Hwang, Y. Jeon, W. H. Antink, Y. Piao, Nanoscale 2017, 9, 15582.
- 51S. Horikoshi, A. Osawa, M. Abe, N. Serpone, J. Phys. Chem. C 2011, 115, 23030.
- 52C. Laporte, P. Baules, A. Laporterie, J. R. Desmurs, J. Dubac, Comptes Rendus De L Academie des Sciences Serie Ii Fascicule C-Chimie 1998, 1, 141.
- 53H. Saleem, A. Edathil, T. Ncube, J. Pokhrel, S. Khoori, A. Abraham, V. Mittal, Macromol. Mater. Eng. 2016, 301, 231.
- 54B. G. Compton, N. S. Hmeidat, R. C. Pack, M. F. Heres, J. R. Sangoro, JOM 2018, 70, 292.
- 55D. Wentzel, S. Millers, I. Sevostianov, Int. J. Eng. Sci. 2017, 120, 63.
- 56R. Aradhana, S. Mohanty, S. K. Nayak, Polymer 2018, 141, 109.
- 57X. Wang, L. X. Gong, L. C. Tang, K. Peng, Y. B. Pei, L. Zhao, L. B. Wu, J. X. Jiang, Compos. A: Appl. Sci. Manuf. 2015, 69, 288.
- 58J. Ding, Y. Huang, X. Sun, H. W. Wu, Y. L. Wang, J. Mater. Sci. Mater. Electr. 2016, 27, 3462.
- 59F. Ren, G. M. Zhu, Y. K. Wang, X. P. Cui, J. Polym. Res. 2014, 21, 585.
- 60C. C. Chen, W. F. Liang, Y. H. Nien, H. K. Liu, R. B. Yang, Mater. Res. Bull. 2017, 96, 81.
- 61T. Durka, G. D. Stefanidis, T. Van Gerven, A. Stankiewicz, Meas. Sci. Technol. 2010, 21, 045108.
- 62M. A. Herrero, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 36.
- 63D. F. Swinehart, J. Chem. Educ. 1962, 39, 333.
- 64G. Nikolic, S. Zlatkovic, M. Cakic, S. Cakic, C. Lacnjevac, Z. Rajic, Sensors 2010, 10, 684.
- 65R. Hardis, J. L. P. Jessop, F. E. Peters, M. R. Kessler, Compos. A: Appl. Sci. Manuf. 2013, 49, 100.
- 66C. Wohlfahrt, Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures in SpringerMaterials, Vol. 6 (Ed: O. Madelung), Springer-Verlag, Berlin, Heidelberg 1991. https://doi.org/10.1007/10047452_2
- 67 Dielectric Constants of Various Materials, Vol. 21, Delta Controls Corporation, Shreveport 1997.
- 68T. L. Greaves, C. J. Drummond, Chem. Soc. Rev. 2013, 42, 1096.
- 69T. L. Greaves, C. J. Drummond, Chem. Soc. Rev. 2008, 37, 1709.
- 70 1g reduced monolayer graphene oxide powder. 2022 https://www.msesupplies.com/products/reduced-monolayer-graphene-oxide-powder-1-gram?variant=33338508431
- 71J. Sun, W. L. Wang, Q. Y. Yue, Materials 2016, 9, 231.
- 72X. Wang, J. Jin, M. Song, Eur. Polym. J. 2012, 48, 1034.
- 73A. J. Guenthner, M. C. Davis, K. R. Lamison, G. R. Yandek, L. R. Cambrea, T. J. Groshens, L. C. Baldwin, J. M. Mabry, Polymer 2011, 52, 3933.
- 74K. J. Hook, R. K. Agrawal, L. T. Drzal, J. Adhes. 1990, 32, 157.
- 75M. R. Rosana, Y. C. Tao, A. E. Stiegman, G. B. Dudley, Chem. Sci. 2012, 3, 1240.
- 76M. Bauer, J. Bauer, G. Kuhn, Acta Polym. 1986, 37, 715.
- 77S. L. Simon, J. K. Gillham, J. Appl. Polym. Sci. 1993, 47, 461.
- 78H. T. Cao, B. J. Liu, Y. W. Ye, Y. F. Liu, P. Li, Appl. Sci. 2019, 9, 2365.
- 79F. R. Alexandre, L. Domon, S. Frere, A. Testard, V. Thiery, T. Besson, Mol. Divers. 2003, 7, 273.
- 80M. Soukri, G. Guillaumet, T. Besson, D. Aziane, M. Aadil, E. M. Essassi, M. Akssira, Tetrahedron Lett. 2000, 41, 5857.
- 81L. Domon, C. Le Coeur, A. Grelard, V. Thiery, T. Besson, Tetrahedron Lett. 2001, 42, 6671.
- 82L. Zemni, G. Dusserre, G. Bernhart, B. Boniface, 21st Int. Conf. Compos. Mater. Semantic Scholar: NIMTECH Innovation Parc Industriel Dr la Haute Bigorre, Xi'an, China 2017, p. 7.