Efficient removal of Cr(VI) from aqueous solutions using chitosan/Na-alginate bio-based nanocomposite hydrogel
Ghada A. Mahmoud
Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
Contribution: Formal analysis (supporting), Investigation (supporting), Supervision (lead), Visualization (equal), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Asmaa Sayed
Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
Correspondence
Asmaa Sayed, Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (equal), Methodology (equal), Software (lead), Writing - original draft (equal)
Search for more papers by this authorManar El-Sayed Abdel-raouf
Egyptian Petroleum Research Institute, Cairo, Egypt
Contribution: Formal analysis (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorMina Y. F. Danial
Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal)
Search for more papers by this authorAyman Amin
Faculty of Agriculture, Cairo University, Cairo, Egypt
Contribution: Supervision (equal), Validation (equal), Visualization (equal)
Search for more papers by this authorGhada A. Mahmoud
Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
Contribution: Formal analysis (supporting), Investigation (supporting), Supervision (lead), Visualization (equal), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Asmaa Sayed
Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
Correspondence
Asmaa Sayed, Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (equal), Methodology (equal), Software (lead), Writing - original draft (equal)
Search for more papers by this authorManar El-Sayed Abdel-raouf
Egyptian Petroleum Research Institute, Cairo, Egypt
Contribution: Formal analysis (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorMina Y. F. Danial
Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Methodology (equal)
Search for more papers by this authorAyman Amin
Faculty of Agriculture, Cairo University, Cairo, Egypt
Contribution: Supervision (equal), Validation (equal), Visualization (equal)
Search for more papers by this authorAbstract
This research article aimed to assist the works conducted to save water resources, which are rapidly depleted as a result of climate change by eliminating toxic chromium ions Cr(VI) from simulated solution. In this regard, chitosan/Na-alginate/polyacrylic acid (CS/Na-Alg/PAAc) and Ni/chitosan/Na-alginate/polyacrylic acid (Ni@CS/Na-Alg/PAAc) were created as eco-friendly hydrogel composites via gamma radiation. The hydrogel matrix served as a basin for the in-situ formation of Ni nanoparticles. The prepared composites were characterized by the FTIR and XRD analyses. The surface morphology of the nanocomposite was also verified via the SEM. It exhibited a dense packing of the Ni nanoparticles representing about 2.5% of the atomic percentage depicted by the EDX analysis. The swelling performance was investigated versus different pH values and the maximum swelling percent was attained as a non-Fickian character at pH = 13 and 5 for CS/Na-Alg/PAAc and Ni@CS/Na-Alg/PAAc, respectively. Furthermore, the surface topographies of CS/Na-Alg/PAAc and Ni@CS/Na-Alg/PAAc loaded with Cr(VI) were examined by AFM at different pH values. The maximum Cr(VI) removal was top achieved at pH 8 (58.06 and 74.5 mg/g for CS/Na-Alg/PAAc and Ni@CS/Na-Alg/PAAc, respectively) and best fit with the Freundlich isotherm model with calculated RL values indicated a favorable adsorption.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
The authors declare that all data supporting the findings and materials of this study are included within the paper.
REFERENCES
- 1C. Bai, L. Wang, Z. Zhu, Int. J. Biol. Macromol. 2020, 147, 898.
- 2K. Szewczuk-Karpisz, G. Fijałkowska, M. Wiśniewska, G. Wójcik, J. Soils Sedim. 2020, 20, 3688.
- 3J. Xu, Y. Guo, T. Gong, K. Cui, L. Hou, C. Yuan, Inorg. Chem. Commun. 2022, 145, 110047.
- 4N. Neyaz, W. A. Siddiqui, K. K. Nair, Int. J. Environ. Sci. 2014, 4, 472.
- 5K. H. Vardhan, P. S. Kumar, R. C. Panda, J. Mol. Liq. 2019, 290, 111197.
- 6H. Ali, E. Khan, I. Ilahi, J. Chem. 2019, 2019, 6730305. https://doi.org/10.1155/2019/6730305.
- 7N. Gaur, G. Flora, M. Yadav, A. Tiwari, Environ. Sci.: Processes Impacts 2014, 16, 180.
- 8H. Wang, M. Zhuang, L. Shan, J. Wu, G. Quan, L. Cui, Y. Zhang, J. Yan, J. Hazard. Mater. 2022, 423, 127098.
- 9Y. Wang, Y. Gong, N. Lin, L. Yu, B. Du, X. Zhang, J. Colloid Interface Sci. 2022, 606, 941.
- 10L. Ma, Y. Du, S. Chen, D. Du, H. Ye, T. C. Zhang, Chemosphere 2022, 287, 132184.
- 11S. Perumal, R. Atchudan, P. Thirukumaran, D. H. Yoon, Y. R. Lee, I. W. Cheong, Chemosphere 2022, 286, 131760.
- 12Z. Wu, P. Zhang, H. Zhang, X. Li, Y. He, P. Qin, C. Yang, J. Hazard. Mater. 2022, 421, 126754.
- 13F. Wang, K. Huang, Z. Xu, F. Cao, C. Chen, F. Shi, N. Chen, Ind. Crops Prod. 2022, 189, 115704.
- 14H. Musarurwa, N. T. Tavengwa, Carbohydr. Polym. 2020, 237, 116142.
- 15M. Abdel-Raouf, A. Abdul-Raheim, Mercury 2017, 8, 15.
- 16M. Raouf, N. Maysour, R. Farag, A. Abdul-Raheim, Int. J. Environ. Agric. Sci. 2019, 3, 18.
- 17X. Guan, B. Zhang, D. Li, M. He, Q. Han, J. Chang, Carbohydr. Polym. 2022, 284, 119179.
- 18M. E.-S. Abdel-raouf, A. Sayed, M. Mostafa, Gums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and Uses, Springer, Gewerbestrasse 2021.
- 19A. Sayed, A. M. Mazrouaa, M. G. Mohamed, M. E.-S. Abdel-Raouf, Environ. Sci. Pollut. Res. 2023, 30, 25903.
- 20A. Sayed, F. Hany, M. E.-S. Abdel-Raouf, G. A. Mahmoud, J. Polym. Res. 2022, 29, 372.
- 21M. Aprilliza, IOP Conf. Ser.: Mater. Sci. Eng. 2017, 188, 012019.
10.1088/1757-899X/188/1/012019 Google Scholar
- 22F. Zou, A. Manthiram, Adv. Energy Mater. 2020, 10, 2002508.
- 23X. Wu, Y. Song, P. Yin, Q. Xu, Z. Yang, Y. Xu, X. Liu, Y. Wang, W. Sun, H. Cai, Appl. Clay Sci. 2022, 228, 106647.
- 24C. Escudero-Oñate, E. Martínez-Francés, Chitin-Chitosan-Myriad Functionalities in Science and Technology, Vol. 1, IntechOpen, London 2018.
- 25M. A. Dutt, M. A. Hanif, F. Nadeem, H. N. Bhatti, J. Environ. Chem. Eng. 2020, 8, 104073.
- 26G. A. Mahmoud, A. Sayed, M. Thabit, G. Safwat, SN Appl. Sci. 2020, 2, 1.
- 27D. A. Barus, S. Humaidi, R. T. Ginting, J. Sitepu, Environ. Nanotechnol. Monit. Manage. 2022, 17, 100650.
- 28N. N. Dil, M. Sadeghi, J. Hazard. Mater. 2018, 351, 38.
- 29M. J. Ndolomingo, N. Bingwa, R. Meijboom, J. Mater. Sci. 2020, 55, 6195.
- 30V. V. Mody, R. Siwale, A. Singh, H. R. Mody, J. Pharm. Bioallied Sci. 2010, 2, 282.
- 31M. Bhaumik, A. Maity, H. G. Brink, Chem. Eng. J. 2021, 417, 127910.
- 32D. Clifford, C. Castano, J. Rojas, Radiat. Phys. Chem. 2017, 132, 52.
- 33S. Park, J. Oh, J. M. Kim, V. Guccini, T. Hwang, Y. Jeon, G. Salazar-Alvarez, Y. Piao, Electrochim. Acta 2020, 354, 136707.
- 34M. Hosseini, M. Sarafbidabad, A. Fakhri, Z. NoorMohammadi, S. Tahami, Int. J. Biol. Macromol. 2018, 118, 1494.
- 35S. Gokila, T. Gomathi, P. Sudha, S. Anil, Int. J. Biol. Macromol. 2017, 104, 1459.
- 36B. K. Shanmugam, S. Rangaraj, K. Subramani, S. Srinivasan, W. K. Aicher, R. Venkatachalam, Mater. Sci. Eng., C 2020, 110, 110710.
- 37B. J. Alloway, Heavy Metals in Soils, Springer, Berlin, Heidelberg 2013.
10.1007/978-94-007-4470-7 Google Scholar
- 38A. Bani, G. Echevarria, S. Sulçe, J. L. Morel, A. Mullai, Plant Soil 2007, 293, 79.
- 39D. Varagiya, B. Jethva, D. Pandya, Environ. Monit. Assess. 2022, 194, 1.
10.1007/s10661-021-09678-8 Google Scholar
- 40R. Karthik, S. Meenakshi, Int. J. Biol. Macromol. 2015, 72, 711.
- 41S. Biswas, T. U. Rashid, T. Debnath, P. Haque, M. M. Rahman, J. Compos. Sci. 2020, 4, 16.
- 42R. Schmuhl, H. Krieg, K. Keizer, Water Sa 2001, 27, 1.
- 43H. Zeng, S. Sun, K. Xu, W. Zhao, R. Hao, J. Zhang, D. Li, J. Cleaner Prod. 2022, 359, 132117.
- 44H. M. Hamadeen, E. A. Elkhatib, M. L. Moharem, Sci. Rep. 2022, 12, 1.
- 45M. Mania, M. Rebeniak, J. Postupolski, Roczniki Państwowego Zakładu Higieny 2019, 70, 393.
- 46Y. Al-Qudah, N. Hegazy, G. A. Mahmoud, E. Hegazy, Desalin. Water Treat. 2022, 252, 177.
- 47A. Sayed, G. A. Mahmoud, H. Said, A. A. Diab, Mater. Chem. Phys. 2022, 280, 125731.
- 48G. A. Mahmoud, H. E. Ali, R. R. Radwan, Arch. Biochem. Biophys. 2022, 731, 109431.
- 49A. Lace, D. Ryan, M. Bowkett, J. Cleary, Int. J. Environ. Res. Publ. Health 2019, 16, 1803.
- 50A. M. Elgamal, N. A. Abd El-Ghany, G. R. Saad, J. Appl. Polym. Sci. 2022, 139, e53179.
- 51J. Yang, L. Rao, Y. Wang, Y. Zhao, D. Liu, Z. Wang, L. Fu, Y. Wang, X. Yang, Y. Li, Polymer 2022, 14, 4377.
- 52Y. He, J. Chen, J. Lv, Y. Huang, S. Zhou, W. Li, Y. Li, F. Chang, H. Zhang, T. Wågberg, J. Cleaner Prod. 2022, 373, 133790.
- 53Y. Huang, B. Wang, J. Lv, Y. He, H. Zhang, W. Li, Y. Li, T. Wågberg, G. Hu, J. Hazard. Mater. 2022, 436, 129270.
- 54J. Weißpflog, D. Vehlow, M. Müller, B. Kohn, U. Scheler, S. Boye, S. Schwarz, Int. J. Biol. Macromol. 2021, 171, 242.
- 55K. P. Gandola, P. L. F. San Luis, R. F. Bajalla Jr.., D. A. D. de Guzman, N. J. R. Rey, M. K. P. Devanadera, A. M. Labrador, Philippine J. Sci. 2020, 149, 1071.
10.56899/149.04.06 Google Scholar
- 56Z. Shafiq, M. Ajmal, S. Kiran, S. Zulfiqar, G. Yasmeen, M. Iqbal, Z. H. Farooqi, Z. Ahmad, N. Sahiner, K. Mahmood, Pure Appl. Chem. 2019, 91, 1567.
- 57U. Soni, J. Bajpai, S. K. Singh, A. Bajpai, J. Water Process Eng. 2017, 16, 56.
- 58G. A. Mahmoud, N. A. El-kelesh, N. A. Badway, F. H. Kamal, A. M. Abdel Aziz, Int. J. Nanopart. 2014, 7, 213.
10.1504/IJNP.2014.067610 Google Scholar
- 59M. K. Azeem, M. Rizwan, A. Islam, A. Rasool, S. M. Khan, R. U. Khan, T. Rasheed, M. Bilal, H. M. Iqbal, Environ. Res. 2022, 214, 113790.
- 60G. Wang, X. Wang, L. Huang, Biotechnol. Biotechnol. Equip. 2017, 31, 766.
- 61K. Kiti, O. Suwantong, Int. J. Biol. Macromol. 2020, 164, 4113.
- 62H. A. Altaleb, A. Salah, B. M. Thamer, Gels 2022, 8, 542.
- 63R. Parthasarathy, C. Jayabaskaran, A. Manikandan, S. Anusuya, Appl. Biochem. Biotechnol. 2023, 195, 2134.
- 64G. Mahdavinia, M. Zohuriaan-Mehr, A. Pourjavadi, Polym. Adv. Technol. 2004, 15, 173.
- 65A. M. S. Al-Anbakey, J. Atoms Mol. 2014, 4, 656.
- 66H. Shoukat, F. Pervaiz, S. Noreen, M. Nawaz, R. Qaiser, M. Anwar, Polym. Bull. 2020, 77, 1869.
- 67O. Grytsenko, I. Gajdoš, E. Spišák, V. Krasinskyi, O. Suberlyak, Materials 2019, 12, 1956.
- 68A. Sayed, M. M. Mohamed, M. E.-S. Abdel-raouf, G. A. Mahmoud, J. Inorg. Organomet. Polym. Mater. 2022, 32, 4589.
10.1007/s10904-022-02465-z Google Scholar
- 69G. A. Mahmoud, M. Abdel-Geleel, N. A. Badway, S. A. A. Farha, E. A. Alshafei, Starch-Stärke 2022, 2022, 2100287.
- 70S. Sharifi, R. Nabizadeh, B. Akbarpour, A. Azari, H. R. Ghaffari, S. Nazmara, B. Mahmoudi, L. Shiri, M. Yousefi, J. Environ. Health Sci. Eng. 2019, 17, 873.
- 71E. Daneshvar, M. J. Zarrinmehr, M. Kousha, A. M. Hashtjin, G. D. Saratale, A. Maiti, M. Vithanage, A. Bhatnagar, Bioresour. Technol. 2019, 293, 122064.
- 72J. Bayuo, M. A. Abukari, K. B. Pelig-Ba, Appl. Water Sci. 2020, 10, 1.
- 73A. S. Al-Gorair, A. Sayed, G. A. Mahmoud, Polymer 2022, 14, 567.
- 74J. Bayuo, J. Environ. Health Sci. Eng. 2021, 19, 1193.
- 75T. Adane, D. Haile, A. Dessie, Y. Abebe, H. Dagne, Appl. Water Sci. 2020, 10, 1.
10.1007/s13201-019-1058-x Google Scholar
- 76A. M. Hasan, M. Keshawy, M. E.-S. Abdel-Raouf, Mater. Chem. Phys. 2022, 278, 125521.
- 77A. Sayed, M. Yasser, M. E.-S. Abdel-raouf, R. Mohsen, Chem. Pap. 2022, 76, 5119.
- 78Z. Darban, S. Shahabuddin, R. Gaur, I. Ahmad, N. Sridewi, Gels 2022, 8, 263.
- 79G. A. Mahmoud, M. Ezz El-Din, A. A. Mohamed, Polym. Bull. 2022, 79, 3117.
- 80Z. Zhang, H. Luo, X. Jiang, Z. Jiang, C. Yang, RSC Adv. 2015, 5, 47408.
- 81Z. Ranjbarha, J. Mokhtari, P. Aberoomand-Azar, S. A. Mirmohammadi, M. Saber-Tehrani, Polyolefins J. 2023, 10, 27.
- 82A. Abdullahi, U. Abubakar, M. K. Sani, M. Yusuf, Studies 2022, 1, 36.
- 83H. Hadi Najafabadi, M. Irani, L. Roshanfekr Rad, A. Heydari Haratameh, I. Haririan, RSC Adv. 2015, 5, 16532.
- 84R. Nowruzi, M. Heydari, V. Javanbakht, Int. J. Biol. Macromol. 2020, 147, 209.
- 85M. S. Samuel, S. S. Shah, V. Subramaniyan, T. Qureshi, J. Bhattacharya, N. P. Singh, Int. J. Biol. Macromol. 2018, 119, 540.
- 86M. S. Samuel, V. Subramaniyan, J. Bhattacharya, C. Parthiban, S. Chand, N. P. Singh, Composites, Part B 2018, 152, 116.
- 87H. Gao, J. Du, Y. Liao, Cellulose 2019, 26, 3285.