Chemical engineering of electrospun nanofibrous-based three-layered nonwoven polymeric protective mask for enhanced performance
Saikat Sinha Ray
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Conceptualization (equal), Investigation (equal), Methodology (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorRitesh Soni
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Data curation (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorDao Thi Thanh Huyen
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Formal analysis (supporting), Methodology (supporting)
Search for more papers by this authorSrinath Ravi
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Formal analysis (supporting), Software (supporting), Visualization (supporting)
Search for more papers by this authorSuwan Myung
Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, South Korea
Contribution: Conceptualization (supporting), Data curation (supporting), Supervision (supporting)
Search for more papers by this authorChang Young Lee
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Conceptualization (supporting), Investigation (supporting), Supervision (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Young-Nam Kwon
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Correspondence
Young-Nam Kwon, Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), South Korea.
Email: [email protected]
Contribution: Funding acquisition (lead), Investigation (supporting), Resources (lead), Supervision (lead), Visualization (lead)
Search for more papers by this authorSaikat Sinha Ray
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Conceptualization (equal), Investigation (equal), Methodology (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorRitesh Soni
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Data curation (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorDao Thi Thanh Huyen
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Formal analysis (supporting), Methodology (supporting)
Search for more papers by this authorSrinath Ravi
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Formal analysis (supporting), Software (supporting), Visualization (supporting)
Search for more papers by this authorSuwan Myung
Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, South Korea
Contribution: Conceptualization (supporting), Data curation (supporting), Supervision (supporting)
Search for more papers by this authorChang Young Lee
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Contribution: Conceptualization (supporting), Investigation (supporting), Supervision (supporting), Validation (supporting)
Search for more papers by this authorCorresponding Author
Young-Nam Kwon
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Correspondence
Young-Nam Kwon, Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), South Korea.
Email: [email protected]
Contribution: Funding acquisition (lead), Investigation (supporting), Resources (lead), Supervision (lead), Visualization (lead)
Search for more papers by this authorFunding information: Ministry of Education, Science and Technology, Grant/Award Number: NRF-2018R1D1A1B07043609; Minitry of Trade, Industry & Energy, Grant/Award Number: 20202020800330
Abstract
During the COVID-19 pandemic, face masks, respirators, and personal protective equipment have become common preventive measures. However, the COVID-19 pandemic has highlighted the lack of efficient and reusable face masks worldwide. Immense efforts have been dedicated to designing antidust and antidroplet masks to ensure safe breathing. In this context, electrospun nanofibrous layers have attracted considerable attention for the fabrication of antidust and antidroplet masks. During long-term usage, water droplet layers can lead to pore blockages; this remains a major concern. In this study, a three-layered sandwich structure comprising a hydrophilic spongy layer, hydrophobic support layer, and antidroplet layer was developed to address this concern. Specifically, the structure comprised polyvinylidene fluoride-silica nanoparticles-perfluorooctyl trichlorosilane/polyethylene/polybenzimidazole (PVDF-Si-NPs-PFTOS/PET/PBI) electrospun nanofibrous layers. The PBI layer was utilized as soft, hydrophilic, skin-friendly layer, as supported by the PET layer for better mechanical stability. In addition, PVDF coated with micro-nano scale Si-NPs as modified with a PFTOS nonwoven electrospun layer was used for the antifouling, antidroplet, and splash resistance capabilities. This novel electrospun nanofibrous nonwoven three-layered sandwich structure (PVDF-Si-PFTOS/PET/PBI) exhibited high performance, with competitive antidroplet abilities. Accordingly, this research can be used to fabricate face masks with antidroplet and splash resistance for personal safety and protective equipment.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
app53584-sup-0001-Supinfo.docxWord 2007 document , 1.5 MB | Figure S1: Diagrammatic representation of production of self-cleaning electrospun nanofibrous face mask (a) electrospinning of outer and inner nanofibrous layer (including polybenzimidazole (PBI)) and (b) functionalization of PVDF outer layer with Si-NPs/PFTOS solution (initiated with tetraethyl orthosilicate (TEOS)) Figure S2: Particle size distribution of silica sol Figure S3: Energy dispersive X-ray spectroscopy (EDS)-based elemental mapping for the outer layer of virgin PVDF and functionalized PVDF-Si-PFTOS of the fabricated face mask Table S1: Thickness of fabricated face mask layers |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 COVID-19 Coronavirus pandemic.
- 2M. Ganesapillai, B. Mondal, I. Sarkar, A. Sinha, S. S. Ray, Y.-N. Kwon, K. Nakamura, K. Govardhan, Environ. Technol. Innov. 2022, 28, 102837.
- 3C. J. L. Murray, Lancet 2022, 399, 3.
- 4S. Z. Harald Brüssow, Microb. Biotechnol. 2021, 0, 17.
- 5 Coronavirus (COVID-19) Vaccinations.
- 6N. K. Markus Hoffmann, S. Schulz, A. Cossmann, C. Rocha, A. Kempf, I. Nehlmeier, L. Graichen, A.-S. Moldenhauer, M. S. Winkler, M. Lier, A. Dopfer-Jablonka, H.-M. Jäck, G. M. N. Behrens, S. Pöhlmann, Cell 2022, 185, 10.
- 7M. Sugimura, O. Chimed-Ochir, Y. Yumiya, H. Ohge, N. Shime, T. Sakaguchi, J. Tanaka, T. Takafuta, M. Mimori, M. Kuwabara, T. Asahara, E. Kishita, T. Kubo, Int. J. Env. Res. Pub. He 2021, 18, 9131.
- 8K. T. Song Peipei, The strategy behind Japan's response to COVID-19 from 2020-2021 and future challenges posed by the uncertainty of the Omicron variant in, Biosci. Trends 2022, 15, 3.
- 9S. Sharma, R. Pinto, A. Saha, S. Chaudhuri, S. Basu, Sci. Adv. 2021, 7, eabf0452.
- 10J. Zhou, Z. Hu, F. Zabihi, Z. Chen, M. Zhu, Adv. Fiber Mater. 2020, 2, 123.
- 11C. Hewawaduge, A. Senevirathne, V. Jawalagatti, J. W. Kim, J. H. Lee, Environ. Res. 2021, 196, 110947.
- 12R. Soni, S. R. Joshi, M. Karmacharya, H. Min, S.-K. Kim, S. Kumar, G.-H. Kim, Y.-K. Cho, C. Y. Lee, ACS Appl. Nano Mater. 2021, 4, 8491.
- 13Y. Pu, J. Zheng, F. Chen, Y. Long, H. Wu, Q. Li, S. Yu, X. Wang, X. Ning, Polymer 2018, 10, 959.
- 14B. P. Lazzaro, M. Zasloff, J. Rolff, Science 2020, 368, eaau5480.
- 15S. S. Ray, H. K. Lee, D. T. T. Huyen, S.-S. Chen, Y.-N. Kwon, Environ. Technol. Innov. 2022, 26, 102290.
- 16 W.Y.F.C. Correctly, How to Safely Wear and Take Off a Cloth Face Covering, Texas Department of State Health Services, Texas 2020. https://www.dshs.texas.gov/sites/default/files/coronavirus/toolkit/print/SafelyWearFaceCovering-EN.pdf
- 17A. I. Nazeeri, I. A. Hilburn, D.-A. Wu, K. A. Mohammed, D. Y. Badal, M. H. Chan, J. L. Kirschvink, medRxiv 2020, 20059709. https://doi.org/10.1101/2020.04.12.20059709
10.1101/2020.04.12.20059709 Google Scholar
- 18S. S. Ray, Y.-I. Park, H. Park, S.-E. Nam, I.-C. Kim, Y.-N. Kwon, Environ. Technol. Innov. 2020, 20, 101093.
- 19S. Oyola-Reynoso, I. Tevis, J. Chen, B. Chang, S. Çinar, J.-F. Bloch, M. M. Thuo, J. Mater. Chem. A 2016, 4, 14729.
- 20Y. Xiu, L. Zhu, D. W. Hess, C. Wong, J. Phys. Chem. C 2008, 112, 11403.
- 21S. Chisca, P. Duong, A.-H. Emwas, R. Sougrat, S. P. Nunes, Polym. Chem. 2015, 6, 543.
- 22N. E. Blanchard, V. V. Naik, T. Geue, O. Kahle, D. Hegemann, M. Heuberger, Langmuir 2015, 31, 12944.
- 23G. M. Shi, Y. Feng, B. Li, H. M. Tham, J.-Y. Lai, T.-S. Chung, Prog. Polym. Sci. 2021, 123, 101470.
- 24G. Korkmaz, M. Kilinc, S. A. Razak, M. Ocak, S. Korkmaz, Y. D. T. Kut, J. Text. I. 2022, 1. https://doi.org/10.1080/00405000.2022.2027073
- 25S. Farzaneh, M. Shirinbayan, Polym. Basel 2022, 14, 291.
- 26J. W. Wu, H. J. Zhou, J. Y. Zhou, X. Zhu, B. W. Zhang, S. S. Feng, Z. X. Zhong, L. X. Kong, W. H. Xing, Chinese J. Chem. Eng. 2021, 36, 1.
- 27V. S. Naragund, P. K. Panda, Emerg. Mater. 2022, 5, 261.
- 28J. Z. Wang, S. Y. Liu, X. Yan, Z. Jiang, Z. J. Zhou, J. Liu, G. T. Han, H. X. Ben, W. Jiang, Mem.Basel 2022, 12, 23.
- 29S. Ullah, A. Ullah, J. Lee, Y. Jeong, M. Hashmi, C. Zhu, K. Il Joo, H. J. Cha, I. S. Kim, Acs Appl. Nano Mater. 2020, 3, 7231.
- 30C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Lancet 2020, 395, 497.
- 31J. C. Rubio-Romero, M. del Carmen Pardo-Ferreira, J. A. Torrecilla-García, S. Calero-Castro, Saf. Sci. 2020, 129, 104830.
- 32J. S. Smith, H. Hanseler, J. Welle, R. Rattray, M. Campbell, T. Brotherton, T. Moudgil, T. F. Pack, K. Wegmann, S. Jensen, J. Clinic. Trans. Sci. 2021, 5, e10.
10.1017/cts.2020.494 Google Scholar
- 33F. Seidi, C. Deng, Y. Zhong, Y. Liu, Y. Huang, C. Li, H. Xiao, Small 2021, 17, 2102453.
- 34K. Pal, G. Z. Kyzas, S. Kralj, F. G. de Souza Jr, J. Mol. Struct. 2021, 1233, 130100.
- 35M. Prado, S. R. D. S. Marski, L. P. Pacheco, A. W. da Costa Barros, C. F. Gerardo, M. Prado, F. D. Marques, J. do Nascimento Lunz, G. C. de Carvalho Silva, B. S. Archanjo, Journal of Materials Research and Technology 2022, 17, 913.
- 36N. El-Atab, N. Qaiser, H. Badghaish, S. F. Shaikh, M. M. Hussain, ACS Nano 2020, 14, 7659.
- 37S. Lee, J.-S. Nam, J. Han, Q. Zhang, E. I. Kauppinen, I. Jeon, ACS Applied Nano Materials 2021, 4, 8135.
- 38C. Pavon, M. Aldas, E. Rayón, M. P. Arrieta, J. López-Martínez, Environ. Technol. Innov. 2021, 24, 101812.
- 39A. Haider, S. Haider, I. K. Kang, Arab J Chem 2018, 11, 1165.
- 40J. Y. Park, I. H. Lee, G. N. Bea, J. Ind. Eng. Chem. 2008, 14, 707.
- 41J. Z. Guo, K. Song, C. Liu, Polymer-based Multifunctional Nanocomposites and Their Applications, Elsevier, Armsterdam, Netherlands 2018.
10.1002/9783527342501 Google Scholar
- 42S. S. Ray, H. K. Lee, D. T. T. Huyen, Y.-I. Park, H. Park, S.-E. Nam, I.-C. Kim, Y.-N. Kwon, Prog. Org. Coat. 2021, 153, 106165.
- 43S. S. Ray, H. Dommati, J.-C. Wang, H. K. Lee, Y.-I. Park, H. Park, I.-C. Kim, S.-S. Chen, Y.-N. Kwon, J. Membr. Sci. 2021, 637, 119641.
- 44Z. Chen, J. N. Hay, M. Jenkins, Eur. Polym. J. 2012, 48, 1586.
- 45S. S. Ray, R. K. Verma, A. Singh, S. Myung, Y.-I. Park, I.-C. Kim, H.-K. Lee, Y.-N. Kwon, Process Saf. Environ. Prot. 2022, 160, 1.
- 46Y. Alvarez-Gallego, B. Ruffmann, V. Silva, H. Silva, A. E. Lozano, G. Jose, S. P. Nunes, J. de Abajo, Polymer 2008, 49, 3875.
- 47K. Hwang, J.-H. Kim, S.-Y. Kim, H. Byun, Energies 2014, 7, 1721.
- 48C. K. Choi, Journal of the Korean Physical Society 2010, 56, 1150.
- 49L. Dong, X. Liu, Z. Xiong, D. Sheng, Y. Zhou, C. Lin, Y. Yang, Appl. Surf. Sci. 2018, 435, 680.
- 50B. Vincent Crist, Handbooks of Monochromatic XPS Spectra-Volume 1-The Elements and Native Oxides, Mountain View: XPS International, LLC, Salem, Oregon 1999.
- 51W. Du, F. Iacoviello, T. Fernandez, R. Loureiro, D. J. Brett, P. R. Shearing, Communications Materials 2021, 2, 1.
10.1038/s43246-021-00160-z Google Scholar
- 52C. Sohrabi, Z. Alsafi, N. O'neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, R. Agha, International journal of surgery 2020, 76, 71.
- 53X. Xie, Y. Li, H. Sun, L. Liu, Journal of the Royal Society Interface 2009, 6, S703.
- 54W. Yim, D. Cheng, S. H. Patel, R. Kou, Y. S. Meng, J. V. Jokerst, ACS Appl. Mater. Interfaces 2020, 12, 54473.
- 55R. Mishra, J. Militky, Nanotechnology in Textiles: Theory and Application, Woodhead Publishing, Sawston, Cambridge 2018.
- 56O. B. Berkalp, Fibres and Textiles in Eastern Europe 2006, 14, 81.
- 57K.-P. Lee, J. Yip, C.-W. Kan, J.-C. Chiou, K.-F. Yung, International Journal of Environmental Research and Public Health 2020, 17, 6623.
- 58K. Gaurav, G. Mittal, A. Karn, A short review on the development of novel face masks during COVID-19 pandemic, (2020).
- 59E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, E. Bormashenko, Journal of colloid and interface science 2007, 311, 212.
- 60A. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546.
- 61E. Bormashenko, Adv. Colloid Interface Sci. 2015, 222, 92.
- 62S. Sinha Ray, H.-K. Lee, Y.-N. Kwon, Polymer 2020, 12, 23.
- 63M. Shakak, R. Rezaee, A. Maleki, A. Jafari, M. Safari, B. Shahmoradi, H. Daraei, S.-M. Lee, Environ. Technol. Innov. 2020, 17, 100529.
- 64R. N. Wenzel, Industrial & Engineering Chemistry 1936, 28, 988.
- 65H. Aziz, M. Amrei, A. Dotivala, C. Tang, H. V. Tafreshi, Colloids Surf., A 2017, 512, 61.
- 66C. Rodriguez, P. Laplace, D. Gallach-Perez, P. Pellacani, R. Martin-Palma, V. Torres-Costa, G. Ceccone, M. M. Silván, Appl. Surf. Sci. 2016, 380, 243.
- 67B. Tucker, M. Hermann, A. Mainguy, R. Oleschuk, Analyst 2020, 145, 643.
- 68S. S. Ray, R. Soni, I.-C. Kim, Y.-I. Park, C. Y. Lee, Y.-N. Kwon, Environ. Technol. Innov. 2022, 28, 102849.
- 69Q.-L. Huang, C.-f. Xiao, X.-s. Feng, X.-Y. Hu, New J. Chem. 2013, 37, 373.
- 70G. Z. Kyzas, A. C. Mitropoulos, Advanced Low-Cost Separation Techniques in Interface Science, Academic Press, Cambridge, Massachusetts 2019.
10.1016/B978-0-12-814178-6.00002-9 Google Scholar
- 71A. Marmur, C. Della Volpe, S. Siboni, A. Amirfazli, J. W. Drelich, Surface Innovations 2017, 5, 3.
- 72S. Jeon, H. Karkhanechi, L.-F. Fang, L. Cheng, T. Ono, R. Nakamura, H. Matsuyama, J. Membr. Sci. 2018, 546, 1.
- 73M. Akalin, I. Usta, D. Kocak, M. Ozen, Investigation of the Filtration Properties of Medical Masks, Medical and Healthcare Textiles, Woodhead Publishing, Sawston, Cambridge 2010, p. 93.
- 74A. Tcharkhtchi, N. Abbasnezhad, M. Z. Seydani, N. Zirak, S. Farzaneh, M. Shirinbayan, Bioactive materials 2021, 6, 106.