Energy harvesting and temperature sensing thermoelectric devices based on the carbon template method
Nan Jiang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Conceptualization (lead), Data curation (lead), Writing - original draft (lead)
Search for more papers by this authorMeijie Qu
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Software (lead)
Search for more papers by this authorHai Wang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Investigation (lead), Resources (equal), Software (equal), Supervision (equal), Validation (equal), Writing - original draft (equal)
Search for more papers by this authorYuezhen Bin
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Investigation (equal), Methodology (equal), Resources (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Rui Zhang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Correspondence
Rui Zhang and Ping Tang, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian 116024, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Validation (equal), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Ping Tang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Correspondence
Rui Zhang and Ping Tang, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian 116024, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Project administration (lead), Supervision (lead), Validation (lead), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorNan Jiang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Conceptualization (lead), Data curation (lead), Writing - original draft (lead)
Search for more papers by this authorMeijie Qu
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Software (lead)
Search for more papers by this authorHai Wang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Investigation (lead), Resources (equal), Software (equal), Supervision (equal), Validation (equal), Writing - original draft (equal)
Search for more papers by this authorYuezhen Bin
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Contribution: Investigation (equal), Methodology (equal), Resources (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Rui Zhang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Correspondence
Rui Zhang and Ping Tang, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian 116024, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Validation (equal), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Ping Tang
Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Correspondence
Rui Zhang and Ping Tang, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian 116024, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Project administration (lead), Supervision (lead), Validation (lead), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorFunding information: MOST Innovation Team, Grant/Award Number: 2018RA4002; National Natural Science Foundation of China, Grant/Award Number: 22073015
Abstract
A series of self-supporting carbon nanomaterial films with different morphologies were employed as conductive templates for n-junction after polyethyleneimine (PEI) doping by taking advantages of the entanglement between carbon nanotubes. With the assistance of dimethyl sulfoxide (DMSO)-treated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) films as p-junction, flexible and light-weight thermoelectric generators (TEGs) were assembled. The effect of the morphology of the carbon nanomaterial, including multi-walled carbon nanotube (MWCNT), whisker carbon nanotube (WSCNT), and graphene on the electrical conductivity, mechanical properties and morphology of n-junction was investigated, on basis of which thermoelectric properties of TEG were evaluated. The properties of the three carbon-based self-supporting films show significant differences. The MWCNT/PEI film exhibits a tensile strength of up to 36.23 ± 0.57 MPa due to the high entanglement network density of MWCNT. The entanglement of WSCNT/MWCNT/PEI provides an ideal conductive template for PEI to prepare n-junction material. TEGs with PEDOT:PSS-DMSO and WSCNT/MWCNT/PEI as p- and n-junctions show high power generation performance and cyclability. The output power density is up to 4.6 nW/cm2 at ΔT = 42.0 K, matched to a suitable load. With its fast response and slow recovery, this TEG is expected to be used for human health monitoring and energy storage.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
All data generated or analysed during this study are included in this published article (and its supplementary information files).
Supporting Information
Filename | Description |
---|---|
app53336-sup-0001-Figures.docxWord 2007 document , 3.6 MB | Figure S1: Particle size distribution of PEDOT:PSS. Figure S2: SEM images of MWCNT, Graphene, WSCNT. Figure S3: SEM images of PEDOT:PSS-DMSO, Graphene/MWCNT/PEI, MWCNT/PEI and WSCNT/MWCNT/PEI sections. Figure S4: Electronic images of TEG. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1N. Sezer, M. Koç, Nano Energy 2020, 80, 1.
- 2L. Liu, X. Guo, W. Liu, C. Lee, Nanomaterials 2021, 11, 2975.
- 3Y. Fan, X. Meng, H. Li, S. Kuang, L. Zhang, Y. Wu, W. Lin, G. Zhu, Adv. Mater. 2016, 29, 1603115.
- 4S. Wang, H. Sun, U. Ail, M. Vagin, P. O. Å. Persson, J. W. Andreasen, W. Thiel, M. Berggren, X. Crispin, D. Fazzi, S. Fabiano, Adv. Mater. 2017, 29, 1770144.
- 5J. Zhu, L. Jia, R. Huang, J. Mater. Sci. Mater. 2017, 28, 12080.
- 6J. Wang, C. Carlos, Z. Zhang, J. Li, Y. Long, F. Yang, Y. Dong, X. Qiu, Y. Qian, X. Wang, ACS Appl. Mater. Interfaces 2020, 12, 26399.
- 7K. Liu, P. Yang, S. Li, J. Li, T. Ding, G. Xue, Q. Chen, G. Feng, J. Zhou, Angew. Chem., Int. Ed. 2016, 55, 8003.
- 8Z. Li, J. Wang, L. Dai, X. Sun, M. An, C. Duan, J. Li, Y. Ni, ACS Appl. Mater. Interfaces 2020, 12, 55205.
- 9A. Sohn, J. H. Lee, H. Yoon, H. H. Lee, S. Kim, Nano Energy 2020, 74, 104840.
- 10Z. Wu, J. Chen, D. W. Boukhvalov, Z. Luo, L. Zhu, Y. Shi, Nano Energy 2021, 85, 105990.
- 11Z. Mao, T. Iizuka, S. Maeda, Sens. Actuator A Phys. 2021, 332, 113168.
- 12P. Shukla, P. Saxena, N. Bhardwaj, V. K. Jain, RSC Adv. 2020, 10, 40608.
- 13J. Cho, Y. Woo, S. Kim, E. Seo, IEEE Trans. Consum. Electron. 2014, 60, 155.
- 14C. Zhang, Q. Zhang, D. Zhang, M. Wang, Y. Bo, X. Fan, F. Li, J. Liang, Y. Huang, R. Ma, Y. Chen, Nano Lett. 2021, 21, 1047.
- 15M. Harasa, T. Skotnicki, Nano Energy 2018, 54, 461.
- 16Y. Jiang, T. Liu, Y. Zhou, Adv. Funct. Mater. 2020, 30, 2006213.
- 17Y. Y. Wanga, K. F. Caia, S. Shend, X. Yao, Synth. Met. 2015, 209, 480.
- 18S. Tu, T. Tian, A. L. Oechsle, S. Yin, X. Jiang, W. Cao, N. Li, M. A. Scheel, L. K. Reb, S. Hou, A. S. Bandarenka, M. Schwartzkopf, S. V. Roth, P. Müller-Buschbaum, Chem. Eng. J. 2022, 429, 132295.
- 19N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. Jo, B. Kim, K. Lee, Adv. Mater. 2019, 2014, 26.
- 20X. Crispin, Nat. Energy 2016, 1, 16037.
- 21J. L. Blackburn, A. J. Ferguson, C. Cho, J. C. Grunlan, Adv. Mater. 2018, 30, 1704386.
- 22D. S. Montgomery, C. A. Hewitt, R. Barbalace, T. Jones, D. L. Carroll, Carbon 2016, 96, 778.
- 23X. Cheng, X. Wang, G. Chen, J. Mater. Chem. A 2018, 6, 19030.
- 24H. Song, K. Cai, W. Jiao, S. Shirley, Synth. Met. 2016, 211, 58.
- 25Y. Hu, D. Li, P. Tang, Y. Bin, H. Wang, Mater. Des. 2019, 184, 108175.
- 26M. Fan, S. Li, L. W. L. Li, M. Qu, J. Nie, R. Zhang, P. Tang, Y. Bin, Chem. Eng. J. 2022, 433, 133499.
- 27M. Fan, X. Xia, S. Li, R. Zhang, L. Wu, M. Qu, P. Tang, Y. Bin, Chem. Eng. J. 2022, 441, 136103.
- 28F. Pang, S. Li, W. Sun, G. Han, Mater. Chem. Phys. 2017, 186, 246.
- 29S. Subianto, N. K. Dutta, N. R. Choudhury, ACS Omega 2017, 2, 3036.
- 30S. Ni, C. Wang, H. Bian, Z. Yu, L. Jiao, G. Fang, H. Dai, Cellulose 2018, 25, 1365.
- 31D. D. Lekeufack, A. Brioude, Y. Lalatonne, L. Motte, A. W. Coleman, P. Miele, J. Nanopart. Res. 2012, 14, 941.
- 32J. Lee, W. Choi, J. Electrochem. Soc. 2015, 162, A935.
- 33G. Hassan, M. Sajid, C. Choi, Sci. Rep. 2019, 9, 15227.
- 34C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkhamb, A. Tuantranont, J. Mater. Chem. 2012, 22, 5478.
- 35E. Yildirim, G. Wu, Y. Xue, T. L. Tan, Q. Zhu, J. Xu, J. Ouyang, J. Wang, S. Yan, J. Mater. Chem. C 2018, 6, 5122.
- 36Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. MüllerMeskamp, K. Leo, Adv. Funct. Mater. 2011, 21, 1076.
- 37J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D. R. T. Zahnd, T. Gessner, J. Mater. Chem. A 2013, 1, 7576.
- 38N. Kim, B. H. Lee, D. Choi, G. Kim, H. Kim, J. R. Kim, J. Lee, Y. H. Kahng, K. Lee, Phys. Rev. Lett. 2012, 109, 106405.
- 39R. Kroon, D. A. Mengistie, D. Kiefer, J. Hynynen, J. D. Ryan, L. Yu, C. Müller, Chem. Soc. Rev. 2016, 45, 6147.
- 40O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater. 2011, 10, 429.
- 41H. Park, J. W. Kim, S. Y. Hong, G. Lee, D. S. Kim, J. H. Oh, S. W. Jin, Y. R. Jeong, S. Y. Oh, J. Y. Yun, J. S. Ha, Adv. Funct. Mater. 2018, 28, 1707013.
- 42M. He, Y. J. Lin, C. M. Chiu, W. Yang, B. Zhang, D. Yun, Y. Xie, Z. H. Lin, Nano Energy 2018, 49, 588.
- 43D. Zhang, K. Zhang, Y. Wang, Y. Wang, Y. Yang, Nano Energy 2019, 56, 25.
- 44A. G. El-Shamy, Mater. Chem. Phys. 2020, 257, 123762.
- 45M. Qu, H. Wang, R. Zhang, Q. Chen, Q. Zhao, R. Liu, P. Tang, Y. Bin, Chem. Eng. J. 2022, 450, 138093.
- 46W. Park, H. Hwang, S. Kim, S. Park, K. Jang, ACS Appl. Mater. Interfaces 2021, 13, 7208.
- 47Y. Cho, N. Okamoto, S. Yamamoto, S. Obokata, K. Nishioka, H. Benten, M. Nakamura, ACS Appl. Energy Mater. 2022, 5, 3698.
- 48Q. Wu, J. Hu, Smart Mater. Struct. 2017, 26, 045037.
- 49M. Bharti, A. Singh, B. P. Singh, S. R. Dhakate, G. Saini, S. Bhattacharya, A. K. Debnath, K. P. Muthe, D. K. Aswal, J. Power Sources 2020, 449, 227493.
- 50W. Lee, Y. H. Kang, J. Y. Lee, Y. C. Song, K. S. Jang, RSC Adv. 2016, 6, 53339.