Surface engineering of Si wafers with tunable surface morphology and stiffness via visible light induced thiol-ene click polymerization with 4-(N,N-diphenylamino)benzaldehyde as an organocatalyst
Yiran Wang
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorQingyu Liao
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorYuqing Fan
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorDong Chen
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorCorresponding Author
Yuhong Ma
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Correspondence
Yuhong Ma and Wantai Yang, Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Email: [email protected] and [email protected]
Search for more papers by this authorChangwen Zhao
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorCorresponding Author
Wantai Yang
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Correspondence
Yuhong Ma and Wantai Yang, Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Email: [email protected] and [email protected]
Search for more papers by this authorYiran Wang
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorQingyu Liao
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorYuqing Fan
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorDong Chen
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorCorresponding Author
Yuhong Ma
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Correspondence
Yuhong Ma and Wantai Yang, Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Email: [email protected] and [email protected]
Search for more papers by this authorChangwen Zhao
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Search for more papers by this authorCorresponding Author
Wantai Yang
Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
Correspondence
Yuhong Ma and Wantai Yang, Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Email: [email protected] and [email protected]
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Number: 51773014
Abstract
A facile strategy is developed to fabricate a two-layer grafted polymer coatings on silicon wafers, specifically soft crosslinked polythioether as middle damping layer and stiff poly(methyl methacrylate) (PMMA) as top protecting layer. At first, a highly crosslinked polythioether layer was constructed on the surface of the silicon wafer with tunable thickness and smooth morphology with trimethylolpropane tris(2-mercaptoacetate) and pentaerythritol triallyl ether as monomers and 4-(N,N-diphenyl-amino)benzaldehyde as an organocatalyst. The Young's modulus of the grafted crosslinked polythioether layer is about 300–400 MPa and the roughness is about 11.3 nm measured by atomic force microscope. There are about 9000 ea reactive –SH in a cuboid cell with 1 nm2 base area and 7–14 μm height in the grafted crosslinked polythiolether layer. Then, a flatten PMMA coating layer with Young's modulus as high as ~2.4 GPa was grafted from/onto the surface of the crosslinked polythiolether with surface –SH groups as initiating or chain transfer sites.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
app52677-sup-0001-Supinfo.zipZip archive, 1.5 MB | Appendix S1 Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1A. Qin, Y. Liu, B. Z. Tang, Macromol. Chem. Phys. 2015, 216, 818.
- 2V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev. 2016, 116, 3086.
- 3J. P. Meyer, P. Adumeau, J. S. Lewis, B. M. Zeglis, Bioconjug. Chem. 2016, 27, 2791.
- 4X. Meng, K. J. Edgar, Prog. Polym. Sci. 2016, 53, 52.
- 5V. Castro, H. Rodríguez, F. Albericio, ACS Comb. Sci. 2016, 18, 1.
- 6N. Agard, J. Prescher, C. Bertozzi, J. Am. Chem. Soc. https://doi.org/10.1021/ja0449981
10.1021/ja0449981 Google Scholar
- 7E. Haldón, M. C. Nicasio, P. J. Pérez, Org. Biomol. Chem. 2015, 13, 9528.
- 8C. Wang, D. Ikhlef, S. Kahlal, J.-Y. Saillard, D. Astruc, Coord. Chem. Rev. 2016, 316, 1.
- 9G. Franc, A. K. Kakkar, Chem. Eur. J. 2009, 15, 5630.
- 10C. E. Hoyle, A. B. Lowe, C. N. Bowman, Chem. Soc. Rev. 2019, 1355, 1355.
- 11B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Prog. Polym. Sci. 2016, 31, 487.
- 12A. E. van der Ende, E. J. Kravitz, E. Harth, J. Am. Chem. Soc. 2018, 130, 8706.
- 13J. Collins, Z. Xiao, M. Müllner, L. A. Connal, Polym. Chem. 2016, 7, 3812.
- 14C. Rissing, D. Y. Son, Organometallics. 2009, 28, 3167.
- 15C. Lluch, J. C. Ronda, M. Galià, G. Lligadas, V. Cádiz, Biomacromolecules. 2010, 11, 1646.
- 16T. Y. Lee, T. M. Roper, E. S. Jonsson, C. A. Guymon, C. E. Hoyle, Macromolecules. 2004, 37, 3606.
- 17R. Okutsu, Y. Suzuki, S. Ando, M. Ueda, Macromolecules. 2008, 41, 6165.
- 18M. Semsarilar, V. Ladmiral, S. Perrier, Macromolecules. 2010, 43, 1438.
- 19J. W. Chan, B. Yu, C. E. Hoyle, A. B. Lowe, Polymer. 2009, 50, 3158.
- 20M. L. Koh, D. Konkolewicz, S. Perrier, Macromolecules. 2011, 44, 2715.
- 21C. R. Morgan, A. D. Ketley, J. Polym. Sci., Polym. Lett. Ed. 1978, 16, 75.
- 22L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, T. J. Bunning, Chem. Mater. 2003, 15, 2477.
- 23T. H. Ware, Z. P. Perry, C. M. Middleton, S. T. Iacono, T. J. White, ACS Macro Lett. 2015, 4, 492.
- 24R. Gharibi, H. Yeganeh, Z. Abdali, J. Mater. Sci. 2018, 53, 1581.
- 25V. S. Khire, A. W. Harant, A. W. Watkins, K. S. Anseth, C. N. Bowman, Macromolecules. 2006, 39, 5081.
- 26C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
- 27J. Xu, C. Boyer, Macromolecules. 2015, 48, 520.
- 28W. Ma, D. Chen, L. Liu, Y. Ma, L. Wang, C. Zhao, W. Yang, J. Polym. Sci. Part A: Polym. Chem. Ed. 2016, 54, 740.
- 29W. Zhang, X. Zhang, Y. Ma, D. Chen, W. Yang, Macromol. Chem. Phys. 2019, 220, 1900022.
- 30Y. Wang, X. Zhang, Y. Ma, D. Chen, C. Zhao, W. Yang, Macromol. Chem. Phys. 2019, 221, 1900557.
- 31C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540.
- 32S. Begum, Z. Hassan, S. Bräse, C. Wöll, M. Tsotsalas, Acc. Chem. Res. 2019, 52, 1598.
- 33L. M. Cox, Z. Li, N. Sowan, D. Nair, J. Xiao, C. N. Bowman, Y. Ding, Polymer. 2014, 55, 5933.
- 34J. J. Cash, T. Kubo, A. P. Bapat, B. S. Sumerlin, Macromolecules. 2015, 48, 2098.
- 35Q. Liao, D. Chen, X. Zhang, Y. Ma, C. Zhao, W. Yang, Langmuir. 2021, 37, 4102.
- 36J. Zhou, Y. Wang, X. Hao, C. Ma, Y. Wang, Z. Zou, J. Phys. Chem. C. 2018, 122, 1037.
- 37H. Chen, C. Zhao, R. Li, Y. Ma, L. Liu, W. Yang, Macromol. Chem. Phys. 2014, 215, 1378.
- 38T. N. Gevrek, K. Yu, J. N. Kizhakkedathu, A. Sanyal, ACS Appl. Polym. Mater. 2019, 1, 1308.
- 39J. R. Yang, M. E. Langmuir, J. Heterocycl. Chem. 1991, 28, 1177.
- 40P. Tang, H. T. Leung, M. T. Gomez, G. Sun, ACS Sens. 2018, 3.
- 41P. Tang, G. Sun, Sens. Actuators B Chem. 2018, 261, 178.
- 42G. L. Ellman, Arch. Biochem. Biophys. 1959, 82, 70.
- 43Y. Li, Y. Ko, Y. Lin, D. Kiserow, J. Genzer, Macromolecules. 2017, 50, 8580.
- 44P. Derboven, D. R. D'hooge, M. M. Stamenovic, P. Espeel, G. B. Marin, F. E. Du Prez, M. F. Reyniers, Macromolecules. 2013, 46, 1732.
- 45,N. B. Cramer, S. K. Reddy, A. K. O'Brien, C. N. Bowman, Macromolecules. 2003, 36, 7964.
- 46D. S. Achilleos, M. Vamvakaki, Materials. 2010, 3, 1981.
- 47N. Ayres, Polym Chem. 2010, 46, 7713.
- 48O. Azzaroni, J. Polym. Sci. Part A: Polym. Chem. Ed. 2012, 50, 3225.
- 49J. Wang, H. Klok, Angew. Chem. Int. Ed., 2019, 58, 9989.
- 50V. Afanassiev, Nucleic Acids Res. 2000, 28, E66.
- 51C. F. Guimarães, L. Gasperini, A. P. Marques, R. L. Reis, Nat. Rev. Mater. 2020, 5, 351.
- 52,G. Raos, B. Zappone, Macromolecules. 2021, 54, 10617.
- 53L. X. Gong, Y. B. Pei, Q. Y. Han, L. Zhao, L. B. Wu, J. X. Jiang, L. C. Tang, Compos., Sci. Technol. 2016, 134, 144.
- 54G. Bulaj, T. Kortemme, D. P. Goldenberg, Biochemistry. 1998, 37, 8965.