Celgard/PIM-1 proton conducting composite membrane with reduced vanadium permeability
Corresponding Author
Victor E. Sizov
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
Correspondence
Victor E. Sizov, Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia.
Email: [email protected]
Search for more papers by this authorVadim V. Zefirov
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorYulia A. Volkova
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorDanil I. Gusak
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorElena P. Kharitonova
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorIgor I. Ponomarev
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorMarat O. Gallyamov
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorCorresponding Author
Victor E. Sizov
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
Correspondence
Victor E. Sizov, Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia.
Email: [email protected]
Search for more papers by this authorVadim V. Zefirov
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorYulia A. Volkova
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorDanil I. Gusak
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorElena P. Kharitonova
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorIgor I. Ponomarev
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorMarat O. Gallyamov
Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorFunding information: Russian Science Foundation, Grant/Award Number: 21-13-00143
Abstract
Renewable energy systems need efficient and cheap storage devices and vanadium redox flow batteries (VRB) may become one of them. However, better performance of VRB membranes yet should be achieved. Novel composite Celgard-based films coated with PIM-1 for aqueous electrolyte VRB applications are presented. Two types of the composites with different PIM-1 loadings are obtained. Their properties are studied and compared with the original Celgard films. The deposited PIM-1 forms a smooth layer on the outer Celgard surface and penetrates inside the porous matrix, thus significantly reducing the pores diameter and affecting the transport properties of the composite film. The nanoporous structure of PIM-1 permits size-screening of H3O+/hydrated vanadium ions when used in aqueous vanadium redox flow batteries applications, which allows to tailor the membrane permeability for the two types of ions and, therefore, to increase its selectivity from 4.3 × 106 to 1.3 × 107 mS min cm−3, while maintaining high proton conductivity.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
app51985-sup-0001-Supinfo.docxWord 2007 document , 147 KB | Appendix S1: Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1E. Sum, M. Skyllas-Kazacos, J. Power Sources 1985, 15, 179.
- 2D. H. Doughty, P. C. Butler, A. A. Akhil, N. H. Clark, J. D. Boyes, Electrochem. Soc. Interface 2010, 19, 49.
- 3C. H. L. Tempelman, J. F. Jacobs, R. M. Balzer, V. Degirmenci, J. Energy Storage 2020, 32, 101754.
- 4Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T. M. Lim, A. Ukil, J. Zhao, Appl. Energy 2019, 238, 202.
- 5Z. Yang, J. Zhang, M. C. W. Kintner-meyer, X. Lu, D. Choi, J. P. Lemmon, Chem. Rev. 2011, 111, 3577.
- 6D. Reed, E. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, B. Koeppel, V. Sprenkle, J. Power Sources 2015, 285, 425.
- 7B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, J. Memb. Sci. 2016, 510, 18.
- 8K. Schmidt-Rohr, Q. Chen, Nat. Mater. 2008, 7, 75.
- 9P. Choi, N. H. Jalani, R. Datta, J. Electrochem. Soc. 2005, 152, 123.
- 10X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chen, J. Memb. Sci. 2009, 341, 149.
- 11J. Xi, Z. Wu, X. Qiu, L. Chen, J. Power Sources 2007, 166, 531.
- 12V. V. Zefirov, V. E. Sizov, M. S. Kondratenko, I. V. Elmanovich, S. S. Abramchuk, V. G. Sergeyev, M. O. Gallyamov, J. Supercrit. Fluids 2019, 150, 56.
- 13Q. Luo, H. Zhang, J. Chen, P. Qian, Y. Zhai, J. Memb. Sci. 2008, 311, 98.
- 14J. Zeng, C. Jiang, Y. Wang, J. Chen, S. Zhu, B. Zhao, R. Wang, Electrochem. Commun. 2008, 10, 372.
- 15J. Qiu, M. Li, J. Ni, M. Zhai, J. Peng, L. Xu, H. Zhou, J. Li, G. Wei, J. Memb. Sci. 2007, 297, 174.
- 16S. Lu, C. Wu, D. Liang, Q. Tan, Y. Xiang, RSC Adv. 2014, 4, 831.
- 17M. Ding, X. Ling, D. Yuan, Y. Cheng, C. Wu, Z. S. Chao, L. Sun, C. Yan, C. Jia, Front. Chem. 2018, 6, 1.
- 18J. Ye, Y. Cheng, L. Sun, M. Ding, C. Wu, D. Yuan, X. Zhao, C. Xiang, C. Jia, J. Memb. Sci. 2019, 572, 110.
- 19L. Zeng, J. Ye, J. Zhang, J. Liu, C. Jia, Surf. Coat. Technol. 2019, 358, 167.
- 20W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi, X. Qiu, J. Mater. Chem. A 2014, 2, 423.
- 21L. Yu, D. Mu, L. Liu, J. Xi, J. Memb. Sci. 2018, 564, 237.
- 22Y. Ji, Z. Y. Tay, S. F. Y. Li, J. Memb. Sci. 2017, 539, 197.
- 23S. Peng, X. Wu, S. Sun, W. Chen, M. Li, J. Li, G. He, Process Saf. Environ. Prot. 2018, 116, 126.
- 24X. L. Zhou, T. S. Zhao, L. An, L. Wei, C. Zhang, Electrochim. Acta 2015, 153, 492.
- 25X. Che, H. Zhao, X. Ren, D. Zhang, H. Wei, J. Liu, X. Zhang, J. Yang, J. Membr. Sci. 2020, 611, 118359.
- 26S. Peng, X. Yan, D. Zhang, X. Wu, Y. Luo, G. He, RSC Adv. 2016, 6, 479.
- 27X. L. Zhou, T. S. Zhao, L. An, Y. K. Zeng, L. Wei, J. Power Sources 2016, 327, 67.
- 28Y. Zhou, P. Qiu, Y. Ma, X. Zhang, D. Xu, J. Lin, Y. Tang, F. Wang, X. He, Z. Zhou, N. Sun, D. Sun, Ceram. Int. 2015, 41, 758.
- 29J. Cao, Z. Yuan, X. Li, W. Xu, H. Zhang, J. Power Sources 2015, 298, 228.
- 30J. Ren, Y. Dong, J. Dai, H. Hu, Y. Zhu, X. Teng, J. Memb. Sci. 2017, 544, 186.
- 31X. Xi, C. Ding, H. Zhang, X. Li, Y. Cheng, H. Zhang, J. Power Sources 2015, 274, 1126.
- 32J. Kim, Y. Lee, J. D. Jeon, S. Y. Kwak, J. Power Sources 2018, 383, 1.
- 33I. S. Chae, T. Luo, G. H. Moon, W. Ogieglo, Y. S. Kang, M. Wessling, Adv. Energy Mater. 2016, 6, 517.
- 34P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, D. Wang, Adv. Mater. 2004, 16, 456.
- 35P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, Chem. Commun. 2004, 4, 230.
- 36N. B. McKeown, ISRN Mater. Sci. 2012, 2012, 1.
10.5402/2012/513986 Google Scholar
- 37C. A. Scholes, S. Kanehashi, Membranes (Basel) 2019, 9, 1.
- 38W. F. Yong, T. S. Chung, J. Polym. Sci. B Polym. Phys. 2017, 55, 344.
- 39M. Di, L. Hu, L. Gao, X. Yan, W. Zheng, Y. Dai, X. Jiang, X. Wu, G. He, Chem. Eng. J. 2020, 399, 833.
- 40I. I. Ponomarev, I. V. Blagodatskikh, A. V. Muranov, Y. A. Volkova, D. Y. Razorenov, I. I. Ponomarev, K. M. Skupov, Polym. Sci. Ser. C 2020, 62, 259.
- 41I. I. Ponomarev, I. V. Blagodatskikh, A. V. Muranov, Y. A. Volkova, D. Y. Razorenov, I. I. Ponomarev, K. M. Skupov, Mendeleev Commun. 2016, 26, 362.
- 42I. I. Ponomarev, D. Y. Razorenov, I. V. Blagodatskikh, A. V. Muranov, L. E. Starannikova, A. Y. Alent'ev, R. Y. Nikiforov, Y. P. Yampol'skii, Polym. Sci. Ser. B 2019, 61, 605.
- 43A. M. Barbe, P. A. Hogan, R. A. Johnson, J. Memb. Sci. 2000, 172, 149.
- 44N. Chaukura, Am. J. Appl. Chem. 2015, 3, 139.
- 45B. Satilmis, P. M. Budd, RSC Adv. 2014, 4, 189.
- 46C. A. Scholes, J. Jin, G. W. Stevens, S. E. Kentish, J. Polym. Sci. B Polym. Phys. 2015, 53, 719.