Effects of polyamide 6 reinforcement on the compatibility of high-density polyethylene/environmental-friendly modified wood fiber composites
Corresponding Author
Kaimeng Xu
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: K. Xu (E-mail: [email protected]) and S. Wang (E-mail: [email protected])Search for more papers by this authorZhifeng Zheng
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorGuanben Du
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorYulu Zhang
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorZhihui Wang
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorTuhua Zhong
Composite Materials and Engineering Center, Washington State University, Pullman, Washington, 99164
Search for more papers by this authorLinkun Xie
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorCorresponding Author
Siqun Wang
Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: K. Xu (E-mail: [email protected]) and S. Wang (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Kaimeng Xu
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: K. Xu (E-mail: [email protected]) and S. Wang (E-mail: [email protected])Search for more papers by this authorZhifeng Zheng
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorGuanben Du
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorYulu Zhang
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorZhihui Wang
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorTuhua Zhong
Composite Materials and Engineering Center, Washington State University, Pullman, Washington, 99164
Search for more papers by this authorLinkun Xie
Key Laboratory for Highly-Efficient Utilization of Forest Biomass Resources in the Southwest China, National Forestry and Grassland Administration; Southwest Forestry University, Kunming, 650224 People's Republic of China
Key Laboratory for Forestry Resources Conversion and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People's Republic of China
Search for more papers by this authorCorresponding Author
Siqun Wang
Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee, 37996
Correspondence to: K. Xu (E-mail: [email protected]) and S. Wang (E-mail: [email protected])Search for more papers by this authorABSTRACT
In order to develop excellent comprehensive mechanical strength and stability in high-density polyethylene (HDPE)/wood fiber (WF) composites, polyamide 6 (PA 6), and WF modified by environmental-friendly high temperature vapor (WF-HTV) were utilized to reinforce the compound system. The properties relating to interfacial compatibility in HDPE/WF-HTV composites were characterized and evaluated by electron universal mechanical instrument, water absorption testing, thermogravimetry, scanning electron microscope, Fourier transfer infrared spectroscopy, and differential scanning calorimetry. The results reveal that this novel compounding system can engender a synergistic effect for interfacial interactions among PA 6, HDPE, and WF-HTV only when the ratio of HDPE to PA 6 is at an optimum level (HDPE:PA 6 = 6:4). The maximum values for flexural strength, modulus, tensile strength, and impact strength can be increased by 82.05, 64.08, 93.47, and 120.45%, respectively, compared with those of HDPE/WF-HTV composites. Additionally, maximum decomposition temperatures for the first and second thermal degradation stages can be increased by 7.17and 8.99 °C, respectively. Water absorption can be effectively controlled at a relatively low level (approximately 1.50%). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47984.
REFERENCES
- 1Hosseinaei, O.; Wang, S. Q.; Enayati, A. A.; Rials, T. G. Compos. Part A. 2012, 43, 686.
- 2Soucy, J.; Godard, F.; Rivard, P.; Koubaa, A. J. Appl. Polym. Sci. 2018, 135, 46484. https://doi.org/10.1002/app.46484.
- 3Xu, K.; Feng, J.; Zhong, T.; Zheng, Z.; Chen, T. Int. Biodeter. Biodegr. 2015, 100, 106.
- 4Gao, X.; Lin, L.; Pang, J. Y.; Chen, F.; Li, Q. D. Carbohydr. Polym. 2019, 207, 343.
- 5Gurunathan, T.; Mohanty, S.; Nayak, S. K. Compos. Part A. 2015, 77, 1.
- 6Sarasini, F.; Tirillò, J.; Sergi, C.; Seghini, M. C.; Cozzarini, L.; Graupner, N. Compos. Struct. 2018, 188, 394.
- 7Nair, S. S.; Hurley, D. C.; Wang, S. Q.; Young, T. M. Polym. Eng. Sci. 2013, 53, 888.
- 8Xu, K.; Tu, D.; Chen, T.; Zhong, T.; Lu, J. Ind. Crop Prod. 2016, 91, 132.
- 9Pulngern, T.; Chitsamran, T.; Chucheepsakul, S.; Rosarpitak, V.; Patcharaphun, S.; Sombatsompop, N. Constr. Build. Mater. 2016, 111, 191.
- 10Machado, J. S.; Santos, S.; Pinho, F. F. S.; Luís, F.; Alves, A.; Simões, R.; Rodrigues, J. C. Mater. Des. 2016, 103, 122.
- 11Hosseinaei, O.; Wang, S. Q.; Taylor, A. M.; Tim, J. W. Int. Biodeter. Biodegr. 2012, 71, 29.
- 12Zierdt, P.; Theumer, T.; Kulkarni, G.; Däumlich, V.; Klehm, J.; Hirsch, U.; Weber, A. Sustain. Mater. Technol. 2015, 6, 6.
- 13Sombatsompop, N.; Yotinwattanakumtorn, C.; Thongpin, C. J. Appl. Polym. Sci. 2005, 97, 475.
- 14Liu, H.; Wu, Q.; Han, G.; Yao, F.; Kojima, Y.; Suzuki, S. Compos. Part A. 2008, 39, 1891.
- 15Ou, R.; Zhao, H.; Sui, S.; Song, Y.; Wang, Q. Compos. Part A. 2010, 41, 1272.
- 16Bledzki, A. K.; Fink, H. P.; Specht, K. J. Appl. Polym. Sci. 2004, 93, 2150.
- 17Avramidis, G.; Hauswald, E.; Lyapin, A.; Militz, H.; Viöl, W. Wood Mater. Sci. Eng. 2009, 4, 52.
- 18Morales, J.; Olayo, M. G.; Cruz, G. J.; Franco, P. H.; Olayo, R. J. Appl. Polym. Sci. 2006, 101, 3821.
- 19Chaudemanche, S.; Perrot, A.; Pimbert, S.; Lecompte, T.; Faure, F. Constr. Build. Mater. 2018, 162, 543.
- 20Tajvidi, M.; Feizmand, M.; Falk, R. H.; Felton, C. J. Reinf. Plast. Compos. 2009, 28, 2781.
- 21Kiziltas, A.; Gardner, D. J.; Han, Y.; Yang, H. S. Thermochim. Acta. 2011, 519, 38.
- 22Amintowlieh, Y.; Sardashti, A.; Simon, L. C. Polym. Compos. 2012, 33, 976.
- 23Ozen, E.; Kiziltas, A.; Kiziltas, E. E.; Gardner, D. J. Polym. Compos. 2013, 34, 544.
- 24Kiziltas, A.; Nazari, B.; Gardner, D. J.; Bousfield, D. W. Polym. Eng. Sci. 2014, 54, 739.
- 25Chandramouli, K.; Jabarin, S. Adv. Polym. Technol. 1995, 14, 35.
- 26Palabiyik, M.; Bahadur, S. Wear. 2000, 246, 149.
- 27Yeh, J. T.; Huang, S. S.; Chen, H. Y. Polym. Eng. Sci. 2005, 45, 25.
- 28Reyes-Lozano, C. A.; Gudiño, P. O.; González-Núñez, R.; Rodrigue, D. J. Cell. Plast. 2011, 47, 153.
- 29Feldmann, M.; Bledzki, A. K. Compos. Sci. Technol. 2014, 100, 113.
- 30Zierdt, P.; Mitzner, E.; Gomoll, A.; Theumer, T.; Lieske, A. J. Appl. Polym. Sci. 2016, 133, 44155. https://doi.org/10.1002/app.44155.
- 31Xu, X. Doctoral Thesis, Georgia Institute of Technology, 2008.
- 32Mallick, S.; Kar, P.; Khatua, B. B. J. Appl. Polym. Sci. 2012, 123, 1801.
- 33Ogunsona, E. O.; Misra, M.; Mohanty, A. K. Compos. Part A. 2017, 98, 32.
- 34Ouajai, S.; Shanks, R. A. Polym. Degrad. Stab. 2005, 89, 327.
- 35Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Fuel. 2007, 86, 1781.
- 36Liu, H.; Wu, Q.; Zhang, Q. Bioresour. Technol. 2009, 100, 6088.
- 37Tjeerdsma, B. F.; Militz, H. Holz. Roh. Werkst. 2005, 63, 102.
- 38Maillo, J.; Pages, P.; Vallejo, E.; Lacorte, T.; Gacén, J. Eur. Polym. J. 2005, 41, 753.
- 39Du, H.; Wang, W.; Wang, Q.; Zhang, Z.; Sui, S.; Zhang, Y. J. Appl. Polym. Sci. 2010, 118, 1068.
- 40Mohanty, S.; Verma, S. K.; Nayak, S. K. Compos. Sci. Technol. 2006, 66, 538.
- 41Lu, N.; Oza, S. Compos. Part B. 2013, 44, 484.
- 42Ou, R.; Xie, Y.; Guo, C.; Wang, Q. J. Appl. Polym. Sci. 2012, SI, 126, E2.