Epoxy-functionalized polysiloxane reinforced epoxy resin for cryogenic application
Shichao Li
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorHongyu Wang
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorMinjing Liu
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCong Peng
Faculty of Mechanical Engineering Materials and Energy, School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Zhanjun Wu
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Correspondence to: Z. Wu (E-mail: [email protected])Search for more papers by this authorShichao Li
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorHongyu Wang
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorMinjing Liu
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCong Peng
Faculty of Mechanical Engineering Materials and Energy, School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Zhanjun Wu
Faculty of Vehicle Engineering and Mechanics, School of Aeronautics and Astronautics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
Correspondence to: Z. Wu (E-mail: [email protected])Search for more papers by this authorABSTRACT
The poor cryogenic mechanical properties of epoxy resins restrict their extensive application in cryogenic engineering fields. In this study, a newly synthesized epoxy-functionalized polysiloxane (PSE) is used to improve the cryogenic mechanical properties of bisphenol-F epoxy resin. The Fourier transform infrared spectra and nuclear magnetic resonance confirm the formation of epoxy-functionalized –Si–O–Si– molecular chain. The surface free energy test results show that the PSE has a better compatibility with epoxy resin. The mechanical test results show that the cryogenic tensile strength, failure strain, fracture toughness, and impact strength of epoxy resin is improved significantly by adding the suitable amounts of PSE. Compared to the neat epoxy resin, the maximum tensile strength (196.92 MPa, an improvement of 11.2%), failure strain (2.97%, an improvement of 33.8%), fracture toughness (3.05 MPa·m1/2, an improvement of 30.7%) and impact strength (40.55 kJ m−2, an improvement of 14.8%) at cryogenic temperature (90 K) is obtained by incorporating 10 wt % PSE into the neat epoxy resin. Moreover, the results also indicated that the tensile strength, Young's modulus, and fracture toughness of epoxy resin with the same PSE content at 90 K are higher than that at room temperature (RT). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 46930.
Supporting Information
Filename | Description |
---|---|
app46930-sup-0001-appendixS1.pdfPDF document, 735.1 KB |
Appendix S1: Figure S1. Dimensions in mm of tensile specimen. Figure S2. Dimensions in mm of single-edge notched bending (SENB) specimen and thefixture for flexural test. Figure S3. Dimensions in mm of unnotchedimpact test specimen. Figure S4. SEM micrographs of fracture surfaces of Si-epoxy composites after fracture toughness testing at RT, scale bar: 300 μm. The smooth fracture surface of neat epoxy resin indicated a typical characteristic of brittle fracture. On the contrary, the obviously rough fracture surfaces (namely the plastic deformation) were observed for the PSE modified epoxy resin, which indicated that the crack propagation paths deflected from their original planes. The reason was that the crack tip was blunted by plastic deformation and resulted in the reduction of stress concentration near the crack tip, and finally prevented the crack propagation. Figure S5. SEM micrographs of fracture surfaces of Si-epoxy composites after fracture toughness testing at 90 K, scale bar: 300 μm. At 90 K, all specimens show a relatively smooth fracture surface, which is due to the fact that the molecular networks of epoxy resin are frozen at cryogenic temperature and result in the increase of brittleness. Compared to the neat epoxy resin, however, the PSE modified epoxy resins still present a more rough fracture, which indicate that the PSE can enhance the toughness of epoxy resin at cryogenic environment. Table S1 Fracture toughness factor KIC of Si-epoxy composites at RT and 90 K |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Wu, Z. J.; Li, J. L.; Chen, Y. P.; Wang, Z.; Li, S. C. J. Appl. Polym. Sci. 2014, 131, 5829.
- 2Xi, J. J.; Yu, Z. Q. J. Appl. Polym. Sci. 2018, 135, 45767.
- 3Wilson, P. R.; Cinar, A. F.; Mostafavi, M.; Meredith, J. Compos. Sci. Technol. 2018, 155, 33.
- 4Chen, Z. K.; Yang, G.; Yang, J. P.; Fu, S. Y.; Ye, L.; Huang, Y. G. Polymer. 2009, 50, 1316.
- 5Wu, Z. J.; Li, S. C.; Liu, M. J.; W, Z.; Liu, X. RSC Adv. 2015, 5, 11325.
- 6Li, J. L.; Li, Z. W.; Wang, H. Y.; Wu, Z. J.; Wang, Z.; Li, S. C. RSC Adv. 2016, 6, 91012.
- 7Wu, Z. J.; Li, S. C.; Liu, M. J.; Wang, H. Y.; W, Z.; Liu, X. Polym. Adv. Technol. 2016, 27, 98.
- 8Huang, D. D.; Xu, F.; Du, X. S.; Lee, Z. H.; Wang, X. J. J. Appl. Polym. Sci. 2017, 134, 45319.
- 9Peng, C.; Li, J. L.; Wu, Z. J.; Peng, W. B.; Zhou, D. Y. RSC Adv. 2016, 6, 38300.
- 10Peng, C.; Li, J. L.; Li, Z. W.; Wu, Z. J.; Zhou, D. Y. Mater. Des. 2016, 111, 453.
- 11Kim, J.; Kim, J.; Song, S.; Zhang, S. Y.; Cha, J.; Kim, K.; Yoon, H.; Jung, Y.; Paik, K. W.; Jeon, S. Carbon. 2017, 113, 379.
- 12Sun, T.; Fan, H. Y.; Wang, Z.; Liu, X.; Wu, Z. J. Mater. Des. 2015, 87, 10.
- 13Zhang, H. Y.; Qi, R. R.; Tong, M. K.; Su, Y. Z.; Huang, M. J. Appl. Polym. Sci. 2012, 125, 1152.
- 14Jiang, W.; Jin, F. L.; Park, S. J. J. Ind. Eng. Chem. 2012, 18, 594.
- 15Bisht, A.; Dasgupta, K.; Lahiri, D. J. Appl. Polym. Sci. 2018, 135, 46101.
- 16Sun, T.; Wu, Z. J.; Zhuo, Q.; Liu, X.; Wang, Z.; Fan, H. Y. Compos. Part A Appl. Sci. Manuf. 2014, 66, 58.
- 17Pour, Z. S.; Ghaemy, M. Compos. Sci. Technol. 2016, 136, 145.
- 18Masser, K. A.; Bain, E. D.; Beyer, F. L.; Savage, A. M.; Yu, J. H.; Lenhart, J. L. Polymer. 2016, 103, 337.
- 19Chruściel, J. J.; Leśniak, E. Prog. Polym. Sci. 2015, 41, 67.
- 20Liu, J.; Thompson, Z. J.; Sue, H. J.; Bates, F. S.; Hillmyer, M. A.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H. Macromolecules. 2010, 43, 7238.
- 21Dhevi, D. M.; Jaisankar, S. N.; Pathak, M. Eur. Polym. J. 2013, 49, 3561.
- 22Yang, G.; Fu, S. Y.; Yang, J. P. Polymer. 2007, 48, 302.
- 23Zhang, W. C.; Camino, G.; Yang, R. J. Prog. Polym. Sci. 2017, 67, 77.
- 24Jia, P.; Liu, H. C.; Liu, Q.; Cai, X. F. Polym. Degrad. Stabil. 2016, 134, 144.
- 25Zhang, Y.; Chen, F. H.; Liu, W.; Zhao, S. M.; Liu, X. G.; Dong, X.; Han, C. C. Polymer. 2014, 55, 4983.
- 26Ahmad, S.; Gupta, A. P.; Sharmin, E.; Alam, M.; Pandey, S. K. Prog. Org. Coat. 2005, 54, 248.
- 27Liu, T. X.; Zhao, Z. S.; Tjiu, W. W.; Lv, J.; Wei, C. J. Appl. Polym. Sci. 2014, 131, 40236.
- 28Wang, J. B.; Zhan, Y. Y.; Fang, J. H.; Gao, H. Q. J. Appl. Polym. Sci. 2012, 123, 1024.
- 29Li, C. L.; Sun, Y. C.; Cheng, M.; Sun, S. Q.; Hu, S. Q. Chem. Eng. J. 2018, 333, 361.
- 30Paluvai, N. R.; Mohanty, S.; Nayak, S. K. J. Appl. Polym. Sci. 2015, 132, 42068.
- 31Kang, N. J.; Du, Z. J.; Li, H. Q.; Zhang, C. J. Appl. Polym. Sci. 2012, 124, 4915.
- 32Ding, J. H.; Rahman, O. U.; Peng, W. J.; Dou, H. M.; Yu, H. B. Appl. Surf. Sci. 2018, 427, 981.
- 33Romo-Uribe, A.; Santiago-Santiago, K.; Reyes-Mayer, A.; Aguilar-Franco, M. Eur. Polym. J. 2017, 89, 101.
- 34Mazzola, L.; Bruno, G. Measurement. 2017, 110, 202.
- 35Kang, W. S.; Rhee, K. Y.; Park, S. J. Compos. Part B Eng. 2017, 114, 175.
- 36Ren, Q. Y.; Zou, H. W.; Liang, M. J. Appl. Polym. Sci. 2014, 131, 40212.
- 37Yang, J. P.; Chen, Z. K.; Yang, G.; Fu, S. Y.; Ye, L. Polymer. 2008, 49, 3168.
- 38Park, S. J.; Jin, F. L.; Park, J. H.; Kim, K. S. Mater. Sci. Eng. A. 2005, 399, 377.
- 39Tripathi, G.; Srivastava, D. Mater. Sci. Eng. A. 2007, 443, 262.
- 40Ren, X.; Peng, S. M.; Zhang, W.; Yi, C. W.; Fang, Y.; Hui, D. Compos. Part B Eng. 2017, 119, 32.
- 41Rutnakornpituk, M. Eur. Polym. J. 2005, 41, 1043.
- 42Huang, K.; Shimada, T.; Ozaki, N.; Hagiwara, Y.; Sumigawa, T.; Guo, L. C.; Kitamura, T. Int. J. Solids Struct. 2017, 128, 67.
- 43Kobayashi, M. Int. J. Solids Struct. 2017, 121, 275.
- 44Chen, J.; Kinloch, A. J.; Sprenger, S.; Taylor, A. C. Polymer. 2013, 54, 4276.
- 45Wu, Y. P.; Chen, M. B.; Chen, M.; Ran, Z. P.; Zhu, C. H.; Liao, H. Polym. Test. 2017, 58, 262.
- 46Shin, H.; Kim, B.; Han, J. G.; Lee, M. Y.; Park, J. K.; Cho, M. Compos. Sci. Technol. 2017, 145, 173.
- 47Liu, Y.; Yang, G.; Xiao, H. M.; Feng, Q. P.; Fu, S. Y. Int. J. Adhes. Adhes. 2013, 41, 113.
- 48Tian, N.; Ning, R. C.; Kong, J. Polymer. 2016, 99, 376.
- 49Feng, Q. P.; Yang, J. P.; Liu, Y.; Xiao, H. M.; Fu, S. Y. J. Mater. Sci. Technol. 2014, 30, 90.
- 50Yang, G.; Zheng, B.; Yang, J. P.; Xu, G. S.; Fu, S. Y. J. Polym. Sci. A Polym. Chem. 2010, 46, 612.