Enhancing compatibility between poly(lactic acid) and thermoplastic starch using admicellar polymerization
Corresponding Author
Kasinee Hemvichian
Nuclear Research and Development Group, Thailand Institute of Nuclear Technology (Public Organization), Ministry of Science and Technology, 9/9, Moo 7, Sai Moon, Ongkharak, Nakorn Nayok, 26120 Thailand
Correspondence to: K. Hemvichian (E-mail: [email protected])Search for more papers by this authorPhiriyatorn Suwanmala
Nuclear Research and Development Group, Thailand Institute of Nuclear Technology (Public Organization), Ministry of Science and Technology, 9/9, Moo 7, Sai Moon, Ongkharak, Nakorn Nayok, 26120 Thailand
Search for more papers by this authorWararat Kangsumrith
Department of Industrial Engineering, Faculty of Engineering, Thammasat University, Khlong Luang, Pathumthani, 12120 Thailand
Search for more papers by this authorPrapanee Sudcha
Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Bangsue, Bangkok, 10800 Thailand
Search for more papers by this authorKamonnit Inchoto
Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Bangsue, Bangkok, 10800 Thailand
Search for more papers by this authorThirawudh Pongprayoon
Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Bangsue, Bangkok, 10800 Thailand
Search for more papers by this authorOlgun Güven
Polymer Chemistry Division, Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06800 Turkey
Search for more papers by this authorCorresponding Author
Kasinee Hemvichian
Nuclear Research and Development Group, Thailand Institute of Nuclear Technology (Public Organization), Ministry of Science and Technology, 9/9, Moo 7, Sai Moon, Ongkharak, Nakorn Nayok, 26120 Thailand
Correspondence to: K. Hemvichian (E-mail: [email protected])Search for more papers by this authorPhiriyatorn Suwanmala
Nuclear Research and Development Group, Thailand Institute of Nuclear Technology (Public Organization), Ministry of Science and Technology, 9/9, Moo 7, Sai Moon, Ongkharak, Nakorn Nayok, 26120 Thailand
Search for more papers by this authorWararat Kangsumrith
Department of Industrial Engineering, Faculty of Engineering, Thammasat University, Khlong Luang, Pathumthani, 12120 Thailand
Search for more papers by this authorPrapanee Sudcha
Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Bangsue, Bangkok, 10800 Thailand
Search for more papers by this authorKamonnit Inchoto
Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Bangsue, Bangkok, 10800 Thailand
Search for more papers by this authorThirawudh Pongprayoon
Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, 1518, Pracharat 1 Road, Bangsue, Bangkok, 10800 Thailand
Search for more papers by this authorOlgun Güven
Polymer Chemistry Division, Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06800 Turkey
Search for more papers by this authorABSTRACT
An alternative method to improve the compatibility between poly(lactic acid) (PLA) and cassava starch (CS) is proposed and investigated. Admicellar polymerization is used to modify the surface of CS with poly(methyl methacrylate) (PMMA) in order to make it more hydrophobic and hence more compatible with PLA. The increased hydrophobicity of PMMA modified cassava starch (MS) is validated by contact angle measurement. Results from iodine test, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) confirm the formation of PMMA film on MS surface. Mechanical properties of PLA-CS and PLA-MS blends are investigated to compare their compatibility. Noticeable improvements in blend tensile strength and elongation at break evidently show that MS is more hydrophobic as well as more compatible with PLA than CS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43755.
REFERENCES
- 1 Ray, S. S. Acc. Chem. Res. 2012, 45, 1710.
- 2 Vink, E. T. H.; Rabago, K. R.; Glassner, D. A. Polym. Degrad. Stabil. 2003, 80, 403.
- 3 Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Prog. Polym. Sci. 2010, 35, 338.
- 4 Teixeira, E. M.; Da Roz, A. L.; Carvalho, A. J. F.; Curvelo, A. A. S. Carbohyd. Polym. 2007, 69, 619.
- 5 Lopez, O. V.; Ninago, M. D.; Soledad Lencina, M. M.; Garcia, M. A.; Andreucetti, N. A.; Ciolino, A. E.; Villar, M. A. Carbohydr. Polym. 2015, 126, 83.
- 6 Shi, R.; Zhang, Z.; Lui, Q.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Carbohydr. Polym. 2007, 69, 748.
- 7 Yang, Y.; Tang, Z.; Ziong, Z.; Zhu, J. Int. J. Biol. Macromol. 2015, 77, 273.
- 8 Ke, T.; Sun, X. Cereal Chem. 2000, 77, 761.
- 9 Kim, S. H.; Chin, I.; Yoon, J.; Kim, S. H.; Jung, J. Korea Polym. J. 1998, 6.
- 10 Ren, J.; Liu, Z. C.; Ren, T. B. Polym. Polym. Compos. 2007, 15, 597.
- 11 Wang, N.; Yu, J.; Chang, P. R.; Ma, X. Carbohydr. Polym. 2008, 71, 109.
- 12 Huneault, M. A.; Li, H. Polymer 2007, 48, 270.
- 13 Ren, J.; Fu, H.; Ren, T.; Yuan, W. Carbohydr. Polym. 2009, 77, 576.
- 14 Wokadala, O. C.; Emmambux, N. M.; Ray, S. S. Carbohydr. Polym. 2014, 112, 216.
- 15 Jariyasakoolroj, P.; Chirachanchai, S. Carbohydr. Polym. 2014, 106, 255.
- 16 Wu, J.; Harwell, J. H.; O'Rear, E. A. J. Phys. Chem. 1987, 91, 623.
- 17 Dickson, J.; O'Haver, J. Langmuir 2002, 18, 9171.
- 18 Kitiyanan, B.; O'Haver, J. H.; Harwell, J. H.; Osuwan, S. Langmuir 1996, 12, 2162.
- 19
Rosen, M. J.;
Kunjappu, J. T. In Surfactants and Interfacial Phenomena; 4th Ed.; Wiley: New Jersey, 2012; Chapter 2, p 44.
10.1002/9781118228920 Google Scholar
- 20
Ulman, K. N.;
Shukla, S. R. Adv. Polym. Tech. 2015, 0, 21556, 10.1002/adv.21556.
10.1002/adv.21556 Google Scholar
- 21 Lei, L.; Qiu, J.; Sakai, E. Chem. Eng. J. 2012, 209, 20.
- 22 Pongprayoon, T.; Yanumet, N.; Sanghong, S. Colloids Surf 2008 A 320, 130.
- 23 Pongprayoon, T.; Yanumet, N.; O'Rear, E. A.; Alvarez, W. E.; Resasco, D. E. J. Colloid Interface Sci. 2005, 281, 307.
- 24 Pongprayoon, T.; Yoopraset, N.; Suwanmala, P.; Hemvichian, K. Rad. Phys. Chem. 2012, 81, 541.
- 25 Nontasorn, P.; Chavadej, S.; Rangsunvigit, P.; O'Haver, J. H.; Chaisirimahamorakot, S.; Na-Ranong, N. Chem. Eng. J. 2005, 108, 213.
- 26 Yooprasert, N.; Pongprayoon, T.; Suwanmala, P.; Hemvichian, K.; Thumcharern, G. Chem. Eng. J. 2010, 156, 193.
- 27 Yoon, S.; Park, M.; Byun, H. Carbohydr. Polym. 2012, 87, 676.
- 28 Canche-Escamilla, G.; Canche-Canche, M.; Duarte-Aranda, S.; Caceres-Farfan, M.; Borges-Argaez, R. Carbohydr. Polym. 2011, 86, 1501.
- 29 Suwanmala, P.; Hemvichian, K.; Hoshina, H.; Srinuttrakul, W.; Seko, N. Rad. Phys. Chem. 2012, 81, 982.
- 30 Lambert, J. B.; Shurvell, H. F.; Lightner, D. A.; Graham Cooks, R. Organic Structural Spectroscopy; Prentice Hall: New Jersey, 1998; Chapter 8.
- 31 Wei, B.; Xu, X.; Jin, Z.; Tian, Y. PLoS ONE 2014, 9, e86024. DOI: 10.1371/journal.pone.0086024.
- 32 Ochoa, N.; Bello, M.; Sancristobal, J.; Balsamo, V.; Albornoz, A.; Brito, J. L. Mater. Res. 2013, 16, 1209.
- 33 Suin, A. B. S.; Khatua, B. B. Carbohydr. Polym. 2014, 110, 430.
- 34 Ferreira, W. H.; Carmo, M. M. I. B.; Silva, A. L. N.; Andrade, C. T. Carbohydr. Polym. 2015, 117, 988.
- 35 Martin, O.; Averous, L. Polymer 2001, 42, 6209.
- 36 Qu, P.; Gao, Y.; Wu, G.; Zhang, L. BioResources 2010, 1811, 5.
Citing Literature
August 15, 2016