Optimizing Charge Separated Synergistic Binding Sites in Self-Healing Crystalline Porous Organic Salts for Benchmark Trace Alkyne/Alkene Separation
Yunjia Jiang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorLingyao Wang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorGuolong Xing
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
These authors contributed equally to this work.
Search for more papers by this authorChanghong Liu
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Search for more papers by this authorGuangzu Xiong
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Search for more papers by this authorDanling Sun
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorJianbo Hu
Research Center for New Materials Computing, Zhejiang Lab, Hangzhou, 311100 P.R. China
Search for more papers by this authorWeidong Zhu
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorZonglin Gu
College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009 P.R. China
Search for more papers by this authorBanglin Chen
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, 350007 P.R. China
Search for more papers by this authorCorresponding Author
Teng Ben
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yuanbin Zhang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province, 341000 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYunjia Jiang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorLingyao Wang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorGuolong Xing
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
These authors contributed equally to this work.
Search for more papers by this authorChanghong Liu
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Search for more papers by this authorGuangzu Xiong
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Search for more papers by this authorDanling Sun
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorJianbo Hu
Research Center for New Materials Computing, Zhejiang Lab, Hangzhou, 311100 P.R. China
Search for more papers by this authorWeidong Zhu
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorZonglin Gu
College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009 P.R. China
Search for more papers by this authorBanglin Chen
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, 350007 P.R. China
Search for more papers by this authorCorresponding Author
Teng Ben
Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yuanbin Zhang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 P.R. China
Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province, 341000 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
The separation of trace alkyne (C2H2/C3H4) impurities from alkenes (C2H4/C3H6) is a significant but challenging process to produce polymer-grade C2H4 and C3H6. Herein, we reported an optimally designed charge-separated organic framework, crystalline porous organic salt (CPOS-1), with confined polar channels for highly efficient alkyne/alkene separation. CPOS-1 exhibits excellent stability, remarkably high C2H2 (18.4 cm3 g−1) and C3H4 (20.9 cm3 g−1) uptakes at 0.01 bar and 298 K, and benchmark C2H2/C2H4 (25.1) and C3H4/C3H6 (43.9) separation selectivities for 1/99 alkyne/alkene mixtures. The practical alkyne/alkene separation performance was completely identified by breakthrough-column experiments under various conditions with excellent cycle stability and high alkene productivities (C2H4: 216.6 L kg−1; C3H6: 162.4 L kg−1). Theoretical calculations indicated that pore aperture in CPOS-1 acts as a tailored single-molecule trap, where alkynes are captured by multiple synergistic electropositive and electronegative sites, thus enhancing alkyne recognition. Furthermore, the ease of rehealing facilitates its practical application, transcending the limitations of the metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202507442-sup-0001-SuppMat.docx35 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1https://www.statista.com/statistics/1067372/global-ethylene-production-capacity/.
- 2https://www.statista.com/statistics/1065879/global-propylene-production-capacity/.
- 3S. Kitagawa, Angew. Chem. Int. Ed. 2015, 54, 10686–10687.
- 4Y. Jiang, W. Yang, Y. Zhang, L. Wang, B. Chen, J. Mater. Chem. A 2024, 12, 5563–5580.
- 5I. Amghizar, L. A. Vandewale, K. M. Van Geem, G. B. Marin, Engineering 2017, 3, 171–178.
- 6D. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437.
- 7Y. Gao, L. Neal, D. Ding, W. Wu, C. Baroi, A. M. Gaffney, F. Li, ACS Catal. 2019, 9, 8592–8621.
- 8M. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828.
- 9T. Ren, M. Patel, K. Blok, Energy 2006, 31, 425–451.
- 10Y. Chai, X. Han, W. Li, S. Liu, S. Yao, C. Wang, W. Shi. I. Da-Silva, P. Manuel, Y. Cheng, L. D. Daemen, A. J. Ramirez-Cuesta, C. C. Tang, L. Jiang, S. Yang, N. Guan, L. Li, Science 2020, 368, 1002–1006.
- 11M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2016, 138, 3022–3030.
- 12W. Gong, Y. Xie, X. Wang, K. O. Kirlikovali, K. B. Idrees, F. Sha, H. Xie, Y. Liu, B. Chen, Y. Cui, O. K. Farha, J. Am. Chem. Soc. 2023, 145, 2679–2689.
- 13X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, Science 2016, 353, 141–144.
- 14Z. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A. M. Al-Enizi, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 5283–5288.
- 15Y. Jiang, Y. Hu, B. Luan, L. Wang, R. Krishna, H. Ni, X. Hu, Y. Zhang, Nat. Commun. 2023, 14, 401.
- 16H. Zeng, M. Xie, T. Wang, R.-J. Wei, X.-J. Xie, Y. Zhao, W. Lu, D. Li, Nature 2021, 595, 542–548.
- 17Y. Wang, M. Fu, S. Zhou, H. Liu, X. Wang, W. Fan, Z. Liu, Z. Wang, D. Li, H. Hao, X. Lu, S. Hu, D. Sun, Chem. 2022, 8, 3263–3274.
- 18X. Feng, X. Wang, H. Yan, H. Liu, X. Liu, J. Guan, Y. Lu, W. Fan, Q. Yue, D. Sun, Angew. Chem. Int. Ed. 2024, 63, e202407240.
- 19Y. Jiang, L. Wang, J. Hu, R. Krishna, B. Chen, Y. Zhang, Adv. Mater. 2024, 36, 2311140.
- 20Z. Zhang, Y. Chen, K. Chai, C. Kang, S. B. Peh, H. Li, J. Ren, X. Shi, X. Han, C. Dejoie, S. J. Day, S. Yang, D. Zhao, Nat. Commun. 2023, 14, 3789.
- 21G.-D. Wang, Y.-Z. Li, W.-J. Shi, L. Hou, Y.-Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202311654.
- 22Y. Zhang, Y. Han, B. Luan, L. Wang, W. Yang, Y. Jiang, T. Ben, Y. He, B. Chen, J. Am. Chem. Soc. 2024, 146, 17220–17229.
- 23P. Zhang, Y. Zhong, Y. Zhang, Z. Zhu, Y. Liu, Y. Su, J. Chen, S. Chen, Z. Zeng, H. Xing, S. Deng, J. Wang, Sci. Adv. 2022, 8, eabn9231.
- 24W. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737.
- 25Y. Zhang, J. Hu, R. Krishna, L. Wang, L. Yang, X. Cui, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2020, 59, 17664–17669.
- 26D.-D. Zhou, P. Chen, C. Wang, S.-S. Wang, Y. Du, H. Yan, Z.-M. Ye, C.-T. He, R.-K. Huang, Z.-W. Mo, N.-Y. Huang, J.-P. Zhang, Nat. Mater. 2019, 18, 994–998.
- 27Z. Zhou, T. Ma, H. Zhang, S. Chheda, H. Li, K. Wang, S. Ehrling, R. Giovine, C. Li, A. H. Alawadhi, M. M. Abduljawad, M. O. Alawad, L. Gagliardi, J. Sauer, O. M. Yaghi, Nature 2024, 635, 96–101.
- 28Z.-J. Lin, S. A. R. Mahammed, T.-F. Liu, R. Cao, ACS Cent. Sci. 2022, 8, 1589–1608.
- 29Z. Zhang, Y. Ye, S. Xiang, B. Chen, Acc. Chem. Res. 2022, 55, 3752–3766.
- 30X. Song, Y. Wang, C. Wang, D. Wang, G. Zhuang, K. O. Kirlikovali, P. Li, O. K. Farha, J. Am. Chem. Soc. 2022, 144, 10663–10687.
- 31R.-B. Lin, Y. He, P. Li, H. Wang, W. Zhou, B. Chen, Chem. Soc. Rev. 2019, 48, 1362–1389.
- 32X.-J. Xi, Y. Li, F.-F. Lang, L. Xu, J. Pang, X.-H. Bu, Giant 2023, 16, 100181.
- 33Y. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao, L. Yang, F. Xiang, S. Chen, Z. Zhang, S. Xiang, B. Chen, Nat. Chem. 2021, 13, 933–939.
- 34Y. Zhou, C. Chen, R. Krishna, Z. Ji, D. Yuan, M. Wu, Angew. Chem. Int. Ed. 2023, 62, e202305041.
- 35H. Li, C. Chen, Q. Li, X. Kong, Y. Liu, Z. Ji, S. Zou, M. Hong, M. Wu, Angew. Chem. Int. Ed. 2024, 63, e202401754.
- 36X. Zhang, L. Li, J.-X. Wang, H.-M. Wen, R. Krishna, H. Wu, W. Zhou, Z.-N. Chen, B. Li, G. Qian, B. Chen, J. Am. Chem. Soc. 2020, 142, 633–640.
- 37Z. Cai, J. Gao, J.-H. Li, P. Liu, Y. Zheng, W. Zhou, H. Wu, L. Li, R.-B. Lin, B. Chen, Angew. Chem. Int. Ed. 2023, 62, e202308579.
- 38Y. Chen, Y. Yang, Y. Wang, Q. Xiong, J. Yang, S. Xiang, L. Li, J. Li, Z. Zhang, B. Chen, J. Am. Chem. Soc. 2022, 144, 17033–17040.
- 39J. Gao, Y. Cai, X. Qian, P. Liu, H. Wu, W. Zhou, D.-X. Liu, L. Li, R.-B. Lin, B. Chen, Angew. Chem. Int. Ed. 2021, 60, 20400–20406.
- 40Y. Yang, H. Zhang, Z. Yuan, J.-Q. Wang, F. Xiang, L. Chen, F. Wei, S. Xiang, B. Chen, Z. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202207579.
- 41Y. Li, X. Wang, H. Zhang, L. He, J. Huang, W. Wei, Z. Yuan, Z. Xiong, H. Chen, S. Xiang, B. Chen, Z. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202311419.
- 42P. Li, Y. He, Y. Zhao, L. Weng, H. Wang, R. Krishna, H. Wu, W. Zhou, M. O'Keeffe, Y. Han, B. Chen, Angew. Chem. Int. Ed. 2015, 54, 574–577.
- 43L. Wang, L. Yang, L. Gong, R. Krishna, Z. Gao, Y. Tao, W. Yin, Z. Xu, F. Luo, Chem. Eng. J. 2020, 383, 123117.
- 44Y. Liu, H. Wu, L. Guo, W. Zhou, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, Z. Bao, Angew. Chem. Int. Ed. 2022, 61, e202117609.
- 45C. Jiang, J.-X. Wang, D. Liu, E. Wu, X.-W. Gu, X. Zhang, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2024, 63, e202404734.
- 46X. Ding, Z. Liu, Y. Zhang, G. Ye, J. Jia, J. Chen, Angew. Chem. Int. Ed. 2022, 61, e202116483.
- 47Q. Yin, Y.-L. Li, L. Li, J. Lv, T.-F. Liu, R. Cao, ACS Appl. Mater. Interfaces 2019, 11, 17823–17827.
- 48X. Song, Y. Wang, C. Wang, X. Gao, Y. Zhou, B. Chen, P. Li, J. Am. Chem. Soc. 2024, 146, 627–634.
- 49Z. Ji, Q. Li, Y. Zhou, R. Krishna, M. Hong, M. Wu, Angew. Chem. Int. Ed. 2024, 63, e202411175.
- 50Y. He, S. Xiang, B. Chen, J. Am. Chem. Soc. 2011, 133, 14570–14573.
- 51Y. Liu, J. Dai, Z. Zhang, Y. Yang, Q. Yang, Q. Ren, Z. Bao, Chem Asian J. 2021, 16, 3978–3984.
- 52Z. Bao, D. Xie, G. Chang, H. Wu, L. Li, W. Zhou, H. Wang, Z. Zhang, H. Xing, Q. Yang, M. J. Zaworotko, Q. Ren, B. Chen, J. Am. Chem. Soc. 2018, 140, 4596–4603.
- 53B. Yu, S. Geng, H. Wang, W. Zhou, Z. Zhang, B. Chen, J. Jiang, Angew. Chem. Int. Ed. 2021, 60, 25942–25948.
- 54Y. Yuan, L. Wang, J. Li, Y. Jiang, W. Sun, Y. Han, B. Luan, J. Bayer, R. N. B. Ferreira, M. Steiner, B. Chen, Y. Zhang, Chem. Mater. 2024, 36, 8123–8130.
- 55K.-J. Chen, D. G. Madden, S. Mukherjee, T. Pham, K. A. Forrest, A. Kumar, B. Space, J. Kong, Q.-Y. Zhang, M. J. Zaworotko, Science 2019, 366, 241–246.
- 56A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science. 2016, 353, 137–140.
- 57Y.-J. Tian, C. Deng, L. Zhao, J.-S. Zou, X.-C. Wu, Y. Jia, Z.-Y. Zhang, J. Zhang, Y.-L. Peng, G. Chen, M. J. Zaworotko, Nat. Chem. 2025, 17, 141–147.
- 58H. Yang, Y. Chen, C. Dang, A. N. Hong, P. Feng, X. Bu, J. Am. Chem. Soc. 2022, 144, 20221–20226.
- 59T. Ke, Q. Wang, J. Shen, J. Zhou, Z. Bao, Q. Yang, Q. Ren, Angew. Chem. Int. Ed. 2020, 59, 12725–12730.
- 60J. Yang, J. Wang, B. Hou, X. Huang, T. Wang, Y. Bao, H. Hao, Chem. Eng. J. 2020, 399, 125873.
- 61F. Hu, C. Liu, M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, Angew. Chem. Int. Ed. 2017, 56, 2101–2104.
- 62G. Xing, D. Peng, T. Ben, Chem. Soc. Rev. 2024, 53, 1495–1513.
- 63G. Xing, T. Yan, S. Das, T. Ben, S. Qiu, Angew. Chem. Int. Ed. 2018, 57, 5345–5349.
- 64G. Xing, I. Bassanetti, S. Bracco, M. Negroni, C. Bezuidenhout, T. Ben, P. Sozzani, A. Commotti, Chem. Sci. 2019, 10, 730–736.
- 65S. Zhang, J. Fu, S. Das, K. Ye, W. Zhu, T. Ben, Angew. Chem. Int. Ed. 2022, 61, e202208660.
- 66T. Ami, K. Oka, K. Tsuchiya, N. Tohnai, Angew. Chem. Int. Ed. 2022, 61, e202202597.
- 67I. Brekalo, D. E. Deliz, L. J. Barbour, M. D. Ward, T. Friščić, K. T. Holman, Angew. Chem. Int. Ed. 2020, 59, 1997–2002.
- 68A. Comotti, S. Bracco, A. Yamamoto, M. Beretta, T. Hirukawa, N. Tohnai, M. Miyata, P. Sozzani, J. Am. Chem. Soc. 2014, 136, 618–621.
- 69Y. Zhao, C. Fan, C. Pei, X. Geng, G. Xing, T. Ben, S. Qiu, J. Am. Chem. Soc. 2020, 142, 3593–3599.
- 70E. Martínez-Ahumada, D. He, V. Berryman, A. López-Olvera, M. Hernandez, V. Jancik, V. Martis, M. A. Vera, E. Lima, D. J. Parker, A. I. Cooper, I. A. Ibrra, M. Liu, Angew. Chem. Int. Ed. 2021, 60, 17556–17563.
- 71J. L. Obeso, D. Hu, V. B. López-Olvera, Y. A. Amador-Sánchez, C. V. Flores, J. G. Flores, S. Ling, E. Lima, A. Gutiérrez-Alejandre, M. A. Vera, R. A. Peralta, J. A. de los Reyes, D. Solis-Ibarra, I. A. Ibarra, M. Liu, Small. 2025, 21, 2408155.
- 72J. Li, Z. Cheng, Z. Wang, J. Dong, H. Jiang, W. Wang, X. Zou, G. Zhu, Angew. Chem. Int. Ed. 2023, 62, e202216675.
- 73S.-C. Xiang, Z. Zhang, C.-G. Zhao, K. Hong, X. Zhao, D.-R. Ding, M.-H. Xie, C.-D. Wu, M. C. Das, R. Gill, K. M. Thomas, B. Chen, Nat. Commun. 2011, 2, 204.
- 74S. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C. Tang, M. Schröder, Nat. Chem. 2015, 7, 121–129.
- 75Y. Zhang, W. Sun, B. Luan, J. Li, D. Luo, Y. Jiang, L. Wang, B. Chen, Angew. Chem. Int. Ed. 2023, 62, e202309925.
- 76F. Jin, E. Jin, T. Wang, S. Geng, L. Hao, Q. Zhu, Z. Wang, Y. Chen, P. Cheng, Z. Zhang, J. Am. Chem. Soc. 2022, 144, 23081–23088.
- 77L. Yang, X. Cui, Q. Yang, S. Qian, H. Wu, Z. Bao, Z. Zhang, Q. Ren, W. Zhou, B. Chen, H. Xing, Adv. Mater. 2018, 30, 1705374.
- 78Y. Jiang, J. Hu, L. Wang, W. Sun, N. Xu, R. Krishna, S. Duttwyler, X. Cui, H. Xing, Y. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200947.
- 79Q. Yin, P. Zhao, R.-J. Sa, G.-C. Chen, J. Lv, T.-F. Liu, R. Cao, Angew. Chem. Int. Ed. 2018, 57, 7691–7696.
- 80L. Li, H.-M. Wen, C. He, R.-B. Lin, R. Krishna, H. Wu, W. Zhou, J. Li, B. Li, B. Chen, Angew. Chem. Int. Ed. 2018, 57, 15183–15188.