Regulating Ion Transport Through Direct Coordination in Composite Gel Polymer Electrolytes Toward High-Voltage and High-Loading Quasi-Solid-State Lithium Metal Batteries
Siyang Ye
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorYuji Zhang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorYiheng Huang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorYan Li
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorZhaojie Li
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorChuan Ou
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorMinghui Lin
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorFei Tian
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Danni Lei
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chengxin Wang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorSiyang Ye
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorYuji Zhang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorYiheng Huang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorYan Li
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorZhaojie Li
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorChuan Ou
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorMinghui Lin
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorFei Tian
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Danni Lei
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chengxin Wang
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Polyether monomers coordinate with aluminum ethoxide nanowires via in situ ultraviolet curing, stabilizing the lone pair electrons of ethereal oxygen atoms and suppressing oxidative degradation. This coordination also forms abundant and tight interfaces as the predominant lithium-ion conduction pathways, contributing to ordered lithium-ion fluxes. The composite gel polymer electrolyte facilitates high-performance Li||LiNi0.6Co0.2Mn0.2O2 cell.
Abstract
Poly(ethylene oxide)-based composite gel polymer electrolyte is widely used in lithium metal batteries to address dendrite growth and side reactions. However, the low oxidative decomposition potential (<4.0 V) of poly(ethylene oxide) limits the cyclic stability with Ni-rich layered cathodes. What's more, poor interface compatibility between fillers and polymer severely deteriorates lithium-ion pathways, which cannot achieve lithium metal batteries with high-load cathode. Herein, polyether monomers coordinate with aluminum ethoxide nanowires via in situ ultraviolet curing, stabilizing the lone pair electrons of ethereal oxygen atoms and suppressing oxidative degradation. This coordination also forms abundant and tight interfaces as the predominant lithium-ion conduction pathways, contributing to ordered lithium-ion fluxes and dendrite-free deposition on the lithium anode. In addition, a robust solid electrolyte interphase containing aluminum-based species enhances the interfacial stability of lithium anode. Meanwhile, the good compatibility between the electrolyte and the cathode effectively suppresses side reactions and contributes to the structural stabilization of the cycled cathode. The delicate design allows the Li||LiNi0.6Co0.2Mn0.2O2 cells to present excellent cycling stability from −20 °C to 60 °C. Specially, cells with 8.8 mg cm−2 cathode cycle stably for over 120 cycles. This molecular structure engineering will greatly promote the practical application of solid-state lithium metal batteries.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202506662-sup-0001-SuppMat.docx23.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Liu, J.-G. Zhang, W. Xu, Joule 2018, 2, 833–845.
- 2J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180–186.
- 3Y. Song, L. Yang, J. Li, M. Zhang, Y. Wang, S. Li, S. Chen, K. Yang, K. Xu, F. Pan, Small 2021, 17, 2102039.
- 4C.-S. Jiang, N. Dunlap, Y. Li, H. Guthrey, P. Liu, S.-H. Lee, M. M. Al-Jassim, Adv. Energy Mater. 2020, 10, 2000219.
- 5M. J. Lee, J. Han, K. Lee, Y. J. Lee, B. G. Kim, K.-N. Jung, B. J. Kim, S. W. Lee, Nature 2022, 601, 217–222.
- 6Y. Gong, K. Fu, S. Xu, J. Dai, T. R. Hamann, L. Zhang, G. T. Hitz, Z. Fu, Z. Ma, D. W. McOwen, X. Han, L. Hu, E. D. Wachsman, Mater. Today 2018, 21, 594–601.
- 7J.-C. Guo, S.-J. Tan, C.-H. Zhang, W.-P. Wang, Y. Zhao, F. Wang, X.-S. Zhang, R. Wen, Y. Zhang, M. Fan, S. Xin, J. Zhang, Y.-G. Guo, Adv. Mater. 2023, 35, 2300350.
- 8A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Chem. Rev. 2020, 120, 6878–6933.
- 9S. Kim, C. Jung, H. Kim, K. E. Thomas-Alyea, G. Yoon, B. Kim, M. E. Badding, Z. Song, J. Chang, J. Kim, D. Im, K. Kang, Adv. Energy Mater. 2020, 10, 1903993.
- 10S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma, G. Yin, J. Wang, Adv. Mater. 2021, 33, 2000721.
- 11Q. Pan, D. Barbash, D. M. Smith, H. Qi, S. E. Gleeson, C. Y. Li, Adv. Energy Mater. 2017, 7, 1701231.
- 12H. Wu, Y. Xu, X. Ren, B. Liu, M. H. Engelhard, M. S. Ding, P. Z. El-Khoury, L. Zhang, Q. Li, K. Xu, C. Wang, J.-G. Zhang, W. Xu, Adv. Energy Mater. 2019, 9, 1902108.
- 13A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, M. Watanabe, Macromolecules 1999, 32, 1541–1548.
- 14D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589.
- 15X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun, N. Holmes, H. Duan, S. Mukherjee, K. Adair, C. Zhao, J. Liang, W. Li, J. Li, Y. Liu, H. Huang, L. Zhang, S. Lu, Q. Lu, R. Li, C. V. Singh, X. Sun, Energy Environ. Sci. 2020, 13, 1318–1325.
- 16T. Hou, D. Wang, B. Jiang, Y. Liu, J. Kong, Y. He, Y. Huang, H. Xu, Nat. Commun. 2025, 16, 962.
- 17F. Faglioni, B. V. Merinov, W. A. Goddard, B. Kozinsky, Phys. Chem. Chem. Phys. 2018, 20, 26098–26104.
- 18K. Nie, X. Wang, J. Qiu, Y. Wang, Q. Yang, J. Xu, X. Yu, H. Li, X. Huang, L. Chen, ACS Energy Lett. 2020, 5, 826–832.
- 19M. Arrese-Igor, M. Martinez-Ibañez, E. Pavlenko, M. Forsyth, H. Zhu, M. Armand, F. Aguesse, P. López-Aranguren, ACS Energy Lett. 2022, 7, 1473–1480.
- 20W. Zhou, Z. Wang, Y. Pu, Y. Li, S. Xin, X. Li, J. Chen, J. B. Goodenough, Adv. Mater. 2019, 31, 1805574.
- 21Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu, J. Kong, Y. Shen, H. Xu, Y. Huang, Adv. Energy Mater. 2023, 13, 2203547.
- 22J. Chen, J. Wu, X. Wang, A. Zhou, Z. Yang, Energy Storage Mater. 2021, 35, 70–87.
- 23L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J. B. Goodenough, Nano Energy 2018, 46, 176–184.
- 24H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 2020, 10, 2000049.
- 25H. An, Q. Liu, J. An, S. Liang, X. Wang, Z. Xu, Y. Tong, H. Huo, N. Sun, Y. Wang, Y. Shi, J. Wang, Energy Storage Mater. 2021, 43, 358–364.
- 26W. Bao, L. Zhao, H. Zhao, L. Su, X. Cai, B. Yi, Y. Zhang, J. Xie, Energy Storage Mater. 2021, 43, 258–265.
- 27D. Lei, J. Benson, A. Magasinski, G. Berdichevsky, G. Yushin, Science 2017, 355, 267–271.
- 28F. Wang, K. Turcheniuk, B. Wang, A.-Y. Song, X. Ren, A. Vallamattam, A. Park, K. Hanley, T. Zhu, G. Yushin, J. Am. Chem. Soc. 2018, 140, 12493–12500.
- 29Z. Wang, Y. Jiang, A. Baiker, J. Huang, Acc. Chem. Res. 2020, 53, 2648–2658.
- 30C. Tian, G. Chu, Y. Feng, Y. Lu, C. Miao, N. Ning, L. Zhang, M. Tian, Compos. Sci. Technol. 2019, 170, 1–6.
- 31S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye, Y. Li, J. Liu, Adv. Mater. 2023, 35, 2110423.
- 32C. H. Park, D. W. Kim, J. Prakash, Y.-K. Sun, Solid State Ion 2003, 159, 111–119.
- 33Y. Wang, Z. Cao, W. Wahyudi, Z. Ma, Y. Liang, L. Cavallo, Q. Li, J. Ming, Adv. Energy Mater. 2023, 13, 2301354.
- 34Y.-X. Yao, N. Yao, X.-R. Zhou, Z.-H. Li, X.-Y. Yue, C. Yan, Q. Zhang, Adv. Mater. 2022, 34, 2206448.
- 35N. Wu, P.-H. Chien, Y. Li, A. Dolocan, H. Xu, B. Xu, N. S. Grundish, H. Jin, Y.-Y. Hu, J. B. Goodenough, J. Am. Chem. Soc. 2020, 142, 2497–2505.
- 36N. Wu, P.-H. Chien, Y. Qian, Y. Li, H. Xu, N. S. Grundish, B. Xu, H. Jin, Y.-Y. Hu, G. Yu, J. B. Goodenough, Angew. Chem. Int. Ed. 2020, 59, 4131–4137.
- 37Q. Zhang, Z. Liu, X. Song, T. Bian, Z. Guo, D. Wu, J. Wei, S. Wu, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202302559.
- 38X. Zhou, Z. Li, W. Li, X. Li, J. Fu, L. Wei, H. Yang, X. Guo, Adv. Fun. Mater. 2023, 33, 2212866.
- 39M. Zhou, R. Liu, D. Jia, Y. Cui, Q. Liu, S. Liu, D. Wu, Adv. Mater. 2021, 33, 2100943.
- 40K. He, S. H.-S. Cheng, J. Hu, Y. Zhang, H. Yang, Y. Liu, W. Liao, D. Chen, C. Liao, X. Cheng, Z. Lu, J. He, J. Tang, R. K. Y. Li, C. Liu, Angew. Chem. Int. Ed. 2021, 60, 12116–12123.
- 41Q. Zhao, X. Liu, S. Stalin, K. Khan, L. A. Archer, Nat. Energy 2019, 4, 365–373.
- 42S. Chai, Z. Chang, Y. Zhong, Q. He, Y. Wang, Y. Wan, M. Feng, Y. Hu, W. Li, W. Wei, A. Pan, Adv. Funct. Mater. 2023, 33, 2300425.
- 43Z. Wen, Z. Zhao, L. Li, Z. Sun, N. Chen, Y. Li, F. Wu, R. Chen, Adv. Funct. Mater. 2022, 32, 2109184.
- 44Y. Chen, F. Huo, S. Chen, W. Cai, S. Zhang, Adv. Funct. Mater. 2021, 31, 2102347.
- 45J. Wu, X. Wang, Q. Liu, S. Wang, D. Zhou, F. Kang, D. Shanmukaraj, M. Armand, T. Rojo, B. Li, G. Wang, Nat. Commun. 2021, 12, 5746.
- 46Y. Meng, D. Zhou, R. Liu, Y. Tian, Y. Gao, Y. Wang, B. Sun, F. Kang, M. Armand, B. Li, G. Wang, D. Aurbach, Nat. Energy 2023, 8, 1023–1033.
- 47C. Fu, X. Zhang, H. Huo, J. Zhu, H. Xu, L. Wang, Y. Ma, Y. Gao, G. Yin, P. Zuo, J. Lu, Adv. Funct. Mater. 2024, 34, 2312187.
- 48U.-H. Kim, G.-T. Park, P. Conlin, N. Ashburn, K. Cho, Y.-S. Yu, D. A. Shapiro, F. Maglia, S.-J. Kim, P. Lamp, C. S. Yoon, Y.-K. Sun, Energy Environ. Sci. 2021, 14, 1573–1583.
- 49S. Han, Z. Li, Y. Zhang, D. Lei, C. Wang, Energy Storage Mater. 2022, 48, 384–392.
- 50Y. Zhang, Y. Wu, H. Li, J. Chen, D. Lei, C. Wang, Nat. Commun. 2022, 13, 1297.
- 51H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, J. Wang, H. Wang, F. Shi, D. Boyle, Y. Cui, Adv. Energy Mater. 2019, 9, 1900858.
- 52Z. Li, X. Zheng, S. Ye, C. Ou, Y. Xie, Z. Li, F. Tian, D. Lei, C. Wang, Small 2023, 19, 2301005.
- 53C. Hinnen, D. Imbert, J. M. Siffre, P. Marcus, Appl. Surf. Sci. 1994, 78, 219–231.
- 54Z. Lu, W. Li, Y. Long, J. Liang, Q. Liang, S. Wu, Y. Tao, Z. Weng, W. Lv, Q.-H. Yang, Adv. Funct. Mater. 2020, 30, 1907343.
- 55K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Sci. Adv. 2017, 3, e1601659.
- 56E. Adhitama, S. van Wickeren, K. Neuhaus, L. Frankenstein, F. Demelash, A. Javed, L. Haneke, S. Nowak, M. Winter, A. Gomez-Martin, T. Placke, Adv. Energy Mater. 2022, 12, 2201859.
- 57T. Fan, W. Kai, V. K. Harika, C. Liu, A. Nimkar, N. Leifer, S. Maiti, J. Grinblat, M. N. Tsubery, X. Liu, M. Wang, L. Xu, Y. Lu, Y. Min, N. Shpigel, D. Aurbach, Adv. Funct. Mater. 2022, 32, 2204972.
- 58H. Wang, D. Lin, Y. Liu, Y. Li, Y. Cui, Sci. Adv. 2017, 3, e1701301.
- 59G. Sun, Z. Zhang, D. Yang, Y. Wang, W. Lu, M. Liu, M. Feng, J. Alloys Compd. 2023, 952, 169971.
- 60S. Klein, J. M. Wrogemann, S. van Wickeren, P. Harte, P. Bärmann, B. Heidrich, J. Hesper, K. Borzutzki, S. Nowak, M. Börner, M. Winter, J. Kasnatscheew, T. Placke, Adv. Energy Mater. 2022, 12, 2102599.