Machine Learning Reveals In-Cavity Versus Surface Activity for Selective C─H Borylation by Metal-Organic Framework Catalysts
Zhaomin Su
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Search for more papers by this authorBingling Dai
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Search for more papers by this authorXue Wang
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Search for more papers by this authorCorresponding Author
Yibin Jiang
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiang'an South Road, Xiang'an District, Xiamen, Fujian, 361100 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWenbin Lin
Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois, 60637 USA
Search for more papers by this authorCorresponding Author
Cheng Wang
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiang'an South Road, Xiang'an District, Xiamen, Fujian, 361100 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhaomin Su
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Search for more papers by this authorBingling Dai
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Search for more papers by this authorXue Wang
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Search for more papers by this authorCorresponding Author
Yibin Jiang
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiang'an South Road, Xiang'an District, Xiamen, Fujian, 361100 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWenbin Lin
Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois, 60637 USA
Search for more papers by this authorCorresponding Author
Cheng Wang
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Rd., Siming District, Xiamen, Fujian, 361005 P.R. China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiang'an South Road, Xiang'an District, Xiamen, Fujian, 361100 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A set of 45 general descriptors was developed to capture the diverse structural features of a wide range of MOFs, enabling the study of MOF-supported nickel (Ni) catalysts for C─H borylation. This analysis revealed key factors that govern sp3 versus sp2 selectivity, allowing for the rational design of Ni catalysts with up to 97.8% sp3 selectivity and 88.7% sp2 selectivity.
Abstract
Metal-organic frameworks (MOFs) provide an expansive and tunable platform for heterogeneous catalysis, yet distinguishing between catalytic reactions occurring within their pores and those on their external surfaces remains a challenge. This study employs interpretable machine learning to elucidate structure-activity relationships in MOF-supported nickel (Ni) catalysts for selective sp3 and sp2 C─H borylation. By analyzing over 470 000 MOF structures, we developed a set of 45 concise and chemically meaningful descriptors that capture key structural variations across MOFs. These descriptors enabled us to identify the critical factors governing sp3 versus sp2 selectivity, revealing distinct activation mechanisms: sp3 C─H borylation preferentially occurs within MOF cavities via a radical-mediated hydrogen atom transfer (HAT) mechanism, whereas sp2 C─H borylation is associated with surface or defect sites, favoring a concerted metalation-deprotonation (CMD) pathway. Guided by these insights, we designed Ni catalysts that achieve up to 97.8% sp3 selectivity and 88.7% sp2 selectivity. This work provides a systematic framework for rational catalyst design and establishes generalizable principles for controlling activity preference in MOF-supported catalysis.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The authors declare that the data supporting the findings of this study are available within the article and its Supporting Information files. The raw data for the paper has been deposited in Figshare under accession code DOI link: https://doi.org/10.6084/m9.figshare.28342175.v2.
Supporting Information
Filename | Description |
---|---|
anie202505931-sup-0001-SuppMat.pdf9.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H.-C. J. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415–5418.
- 2H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341.
- 3L. Jiao, J. Y. R. Seow, W. S. Skinner, Z. U. Wang, H.-L. Jiang, Mater. Today 27, 43–68.
10.1016/j.mattod.2018.10.038 Google Scholar
- 4J. Gascon, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, ACS Catal. 2014, 4, 361–378.
- 5C. Wang, D. Liu, W. Lin, J. Am. Chem. Soc. 2013, 135, 13222–13234.
- 6S. M. Cohen, Chem. Rev. 2012, 112, 970–1000.
- 7L. Ma, J. M. Falkowski, C. Abney, W. Lin, Nat. Chem. 2010, 2, 838–846.
- 8K. Manna, T. Zhang, F. X. Greene, W. Lin, J. Am. Chem. Soc. 2015, 137, 2665–2673.
- 9X. Feng, Y. Song, Z. Li, M. Kaufmann, Y. Pi, J. S. Chen, Z. Xu, Z. Li, C. Wang, W. Lin, J. Am. Chem. Soc. 2019, 141, 11196–11203.
- 10J. Chen, H. Li, H. Wang, Y. Song, Q. Hong, K. Chang, H. Hu, S. Zhang, L. Cao, C. Wang, Chem. Commun. 2023, 59, 8432–8435.
- 11T. Sawano, N. C. Thacker, Z. Lin, A. R. McIsaac, W. Lin, J. Am. Chem. Soc. 2015, 137, 12241–12248.
- 12H. Hu, Y. Su, X. Cui, B. Zhao, J. Chen, S. Chen, M. Chen, H. Huo, C. Wang, Cell Rep. Phys. Sci. 2023, 4.
- 13T. Tang, Y. Dai, J. Liu, J. Chen, B. Dai, B. Zhao, C. Wang, ACS Appl. Eng. Mater. 2023, 1, 2368–2376.
- 14B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes, N. Rankin, B. Harris, R. S. Sprick, A. I. Cooper, Nature 2020, 583, 237–241.
- 15Y. Guo, X. He, Y. Su, Y. Dai, M. Xie, S. Yang, J. Chen, K. Wang, D. Zhou, C. Wang, J. Am. Chem. Soc. 2021, 143, 5755–5762.
- 16A. Slattery, Z. Wen, P. Tenblad, J. Sanjosé-Orduna, D. Pintossi, T. den Hartog, T. Noël, Science 2024, 383.
- 17Q. Zhu, Y. Huang, D. Zhou, L. Zhao, L. Guo, R. Yang, Z. Sun, M. Luo, F. Zhang, H. Xiao, X. Tang, X. Zhang, T. Song, X. Li, B. Chong, J. Zhou, Y. Zhang, B. Zhang, J. Cao, G. Zhang, S. Wang, G. Ye, W. Zhang, H. Zhao, S. Cong, H. Li, L.-L. Ling, Z. Zhang, W. Shang, J. Jiang, Y. Luo, Nat. Synth. 2023, 3, 319–328.
- 18F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, A. Aspuru-Guzik, Appl. Phys. Rev. 2021, 8.
- 19M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.-T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C.-S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S.-C. Lo, A. Ip, Z. Ulissi, E. H. Sargent, Nature 2020, 581, 178–183.
- 20K. Tran, Z. W. Ulissi, Nat. Catal. 2018, 1, 696–703.
- 21T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, Micropor. Mesopor. Mat. 2012, 149, 134–141.
- 22S. M. Moosavi, A. Nandy, K. M. Jablonka, D. Ongari, J. P. Janet, P. G. Boyd, Y. Lee, B. Smit, H. J. Kulik, Nat. Commun. 2020, 11.
- 23M. Fernandez, N. R. Trefiak, T. K. Woo, J. Phys. Chem. C 2013, 117, 14095–14105.
- 24B. Pang, Y. Fu, S. Ren, Y. Wang, Q. Liao, Y. Jia, arXiv – CS – Machine Learning 2021.
- 25J. Wang, J. Liu, H. Wang, G. Ke, L. Zhang, J. Wu, Z. Gao, D. Lu, < Uni-Mof-Metal-Organic-Frameworks-Meet-Uni-Mof-a-Revolutionary-Gas-Adsorption-Detector.Pdf>, 2023.
- 26C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171–179.
- 27Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, R. Q. Snurr, Chem. Mater. 2014, 26, 6185–6192.
- 28Y. G. Chung, E. Haldoupis, B. J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K. D. Vogiatzis, M. Milisavljevic, S. Ling, J. S. Camp, B. Slater, J. I. Siepmann, D. S. Sholl, R. Q. Snurr, J. Chem. Eng. Data 2019, 64, 5985–5998.
- 29P. G. Boyd, A. Chidambaram, E. García-Díez, C. P. Ireland, T. D. Daff, R. Bounds, A. Gładysiak, P. Schouwink, S. M. Moosavi, M. M. Maroto-Valer, J. A. Reimer, J. A. R. Navarro, T. K. Woo, S. Garcia, K. C. Stylianou, B. Smit, Nature 2019, 576, 253–256.
- 30M. Z. Aghaji, M. Fernandez, P. G. Boyd, T. D. Daff, T. K. Woo, Eur. J. Inorg. Chem. 2016, 2016, 4505–4511.
- 31Y. J. Colón, D. A. Gómez-Gualdrón, R. Q. Snurr, T. Guided, Cryst. Growth Des. 2017, 17, 5801–5810.
- 32Y. Lan, T. Yan, M. Tong, C. Zhong, Mater. Chem. A 2019, 7, 12556–12564.
- 33C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 2012, 4, 83–89.
- 34J. Burner, J. Luo, A. White, A. Mirmiran, O. Kwon, P. G. Boyd, S. Maley, M. Gibaldi, S. Simrod, V. Ogden, T. K. Woo, Chem. Mater. 2023, 35, 900–916.
- 35J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka, M. R. Smith, Science 2002, 295, 305–308.
- 36M. R. Jones, C. D. Fast, N. D. Schley, J. Am. Chem. Soc. 2020, 142, 6488–6492.
- 37K. T. Smith, S. Berritt, M. González-Moreiras, S. Ahn, M. R. Smith, M.-H. Baik, D. J. Mindiola, Science 2016, 351, 1424–1427.
- 38M. A. Larsen, R. J. Oeschger, J. F. Hartwig, ACS Catal. 2020, 10, 3415–3424.
- 39S. Kawamorita, H. Ohmiya, K. Hara, A. Fukuoka, M. Sawamura, J. Am. Chem. Soc. 2009, 131, 5058–5059.
- 40T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390–391.
- 41J.-Y. Cho, C. N. Iverson, M. R. Smith, J. Am. Chem. Soc. 2000, 122, 12868–12869.
- 42C. B. Bheeter, A. D. Chowdhury, R. Adam, R. Jackstell, M. Beller, Org. Biomol. Chem. 2015, 13, 10336–10340.
- 43H. Chen, S. Schlecht, T. C. Semple, J. F. Hartwig, Science 2000, 287, 1995–1997.
- 44A. Kaithal, D. Kalsi, V. Krishnakumar, S. Pattanaik, A. Bordet, W. Leitner, C. Gunanathan, ACS Catal. 2020, 10, 14390–14397.
- 45J. M. Murphy, J. D. Lawrence, K. Kawamura, C. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 13684–13685.
- 46S. D. Sarkar, N. Y. P. Kumar, L. Ackermann, Chem. Eur. J. 2016, 23, 84–87.
- 47W. Yao, J. Yang, F. Hao, ChemSusChem 2020, 13, 121–125.
- 48W. N. Palmer, C. Zarate, P. J. Chirik, J. Am. Chem. Soc. 2017, 139, 2589–2592.
- 49A. Das, P. K. Hota, S. K. Mandal, Organometallics 2019, 38, 3286–3293.
- 50H. Zhang, S. Hagihara, K. Itami, Chem. Lett. 2015, 44, 779–781.
- 51T. Furukawa, M. Tobisu, N. Chatani, Chem. Commun. 2015, 51, 6508–6511.
- 52J. V. Obligacion, S. P. Semproni, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 4133–4136.
- 53W. N. Palmer, J. V. Obligacion, I. Pappas, P. J. Chirik, J. Am. Chem. Soc. 2016, 138, 766–769.
- 54R. Sang, W. Han, H. Zhang, C. M. Saunders, A. Noble, V. K. Aggarwal, J. Am. Chem. Soc. 2023, 145, 15207–15217.
- 55T. Dombray, C. G. Werncke, S. Jiang, M. Grellier, L. Vendier, S. Bontemps, J.-B. Sortais, S. Sabo-Etienne, C. Darcel, J. Am. Chem. Soc. 2015, 137, 4062–4065.
- 56D. Yoshii, T. Yatabe, T. Yabe, K. Yamaguchi, ACS Catal. 2021, 11, 2150–2155.
- 57L. Cao, T. Wang, C. Wang, Chin. J. Chem. 2018, 36, 754–764.
- 58A. Dhakshinamoorthy, C. V. García, P. Concepcion, H. Garcia, Catal. Today 2021, 366, 212–217.
- 59K. Manna, P. Ji, Z. Lin, F. X. Greene, A. Urban, N. C. Thacker, W. Lin, Nat. Commun. 2016, 7.
- 60J. Thongpaen, R. Manguin, V. Dorcet, T. Vives, C. Duhayon, M. Mauduit, O. Baslé, Angew. Chem. Int. Ed. 2019, 58, 15244–15248.
- 61J. C. A. Oliveira, U. Dhawa, L. Ackermann, ACS Catal. 2021, 11, 1505–1515.
- 62I. F. Yu, K. A. D'Angelo, Á. D. Hernandez-Mejías, N. Cheng, J. F. Hartwig, J. Am. Chem. Soc. 2024, 146, 7124–7129.