P-type Cathode Material Design Guided by Material Descriptors for High-Energy Density Sodium Batteries
Weijia Zhang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorTianjiang Sun
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorWeichao Cheng
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorMengyao Shi
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorMin Cheng
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorQiong Sun
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorJianfei Su
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXiulan Li
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Zhanliang Tao
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]
Search for more papers by this authorWeijia Zhang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorTianjiang Sun
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorWeichao Cheng
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorMengyao Shi
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorMin Cheng
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorQiong Sun
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorJianfei Su
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXiulan Li
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Zhanliang Tao
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
The material descriptors are first proposed to guide the design and screening of high-energy density p-type organic cathode materials. Triphenylamine and synthesized p-PZA POP proved the rationality of these descriptors. Na||p-PZA POP batteries exhibit a surprisingly high energy density of 524.6 Wh kg−1 at 1 A g−1 and excellent wide-temperature electrochemical performance.
Abstract
P-type organic electrode materials (OEMs) face considerable challenges in constructing high-energy density sodium metal batteries (SMBs) due to their low capacity. To preserve their voltage advantage, developing effective structural design strategies is essential. However, the lack of material descriptors hampers the efficiency of material design and screening. Herein, two material descriptors: the benzene ring/active nitrogen (R/N) ratio and energy density factor (Ef) are established to guide high-energy density SMB design. As proof of concept, triphenylamine (TPA, 3 R/N ratio and 573.6 Ef value) and a porous organic polymer condensation of triiodotriphenylamine and dihydrophenazine named p-PZA POP (1.5 R/N ratio and 907.5 Ef value) are chosen. As a result, the p-PZA POP achieves a high energy density of 524.6 Wh kg−1 at 1 A g−1, nearly double that of TPA (273.3 Wh kg−1). Remarkably, p-PZA POP demonstrates excellent wide-temperature electrochemical performance from 50 °C (166.2 mAh g−1 at 1 A g−1) to −20 °C (141.6 mAh g−1 at 0.1 A g−1). This work establishes a theoretical framework for the rational design and screening of high-performance p-type OEMs through predictive material descriptors.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data available on request due to privacy/ethical restrictions.
Supporting Information
Filename | Description |
---|---|
anie202505831-sup-0001-SupMat.docx3.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Cheng, X. Yan, J. Yu, X. Zhang, H. G. Wang, F. Cui, Y. Wang, Adv. Mater. 2024, 2411625.
- 2E. Gabriel, C. Ma, K. Graff, A. Conrado, D. Hou, H. Xiong, eScience 2023, 3, 100139.
- 3W. Zhang, T. Sun, W. Hao, M. Cheng, Z. Zha, M. Shi, Z. Tao, Energy Storage Mater. 2024, 70, 103561.
- 4D. Ruiz-Martinez, R. Grieco, M. Liras, N. Patil, R. Marcilla, Adv. Energy Mater. 2024, 14, 2400857.
- 5C. Xie, H. Wu, K. Liang, Z. Ding, J. Dai, R. Zhang, Q. Zhang, D. Sun, Y. Ren, Y. Li, Y. Tang, H. Wang, Energ. Environ. Sci. 2024, 17, 4228–4237.
- 6Y. Luo, Q. Pan, H. Wei, Y. Huang, P. Li, L. Tang, Z. Wang, C. Yan, J. Mao, K. Dai, Q. Wu, X. Zhang, J. Zheng, eScience 2024, 4, 100229.
- 7Z. Gu, J. Cao, J. Guo, X. Wang, X. Zhao, S. Zheng, Z. Sun, J. Yang, K. Zhang, H. Liang, K. Li, X. Wu, J. Am. Chem. Soc. 2024, 146, 4652–4664.
- 8E. Goikolea, V. Palomares, S. Wang, I. R. de Larramendi, X. Guo, G. Wang, T. Rojo, Adv. Energy Mater. 2020, 10, 2002055.
- 9J. Ke, L. Su, Energy Storage Mater. 2025, 76, 104133.
- 10A. Duan, Z. Wang, X. Huang, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202302754.
- 11Z. Song, L. Miao, H. Duan, Y. Lv, L. Gan, M. Liu, Angew. Chem. Int. Ed. 2024, 63, e202401049.
- 12Y. Zhang, M. Li, Z. Li, Y. Lu, H. Li, J. Liang, X. Hu, L. Zhang, K. Ding, Q. Xu, H. Liu, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202410342.
- 13T. Sun, W. Zhang, M. Shi, D. Li, Q. Sun, M. Cheng, Z. Tao, Angew. Chem. Int. Ed. 2024, 64, e202416845.
- 14Y. Zhang, Z. Song, Q. Huang, Y. Lv, L. Gan, M. Liu, Angew. Chem. Int. Ed. 2025, 64, e202423936.
- 15S. Zhang, J. Cai, H. Li, F. Xing, L. Chen, X. Wang, X. He, Adv. Energy Mater. 2024, 15, 2403029.
- 16K. Lee, I. E. Serdiuk, G. Kwon, D. J. Min, K. Kang, S. Y. Park, J. E. Kwon, Energ. Environ. Sci. 2020, 13, 4142–4156.
- 17Z. Song, Q. Huang, Y. Lv, L. Gan, M. Liu, Angew. Chem. Int. Ed. 2024, 64, e202418237.
- 18J. Zeng, L. Chen, S. Zhang, F. Xing, H. Li, X. Wang, X. He, Adv. Funct. Mater. 2024, 34, 2407258.
- 19H. Wang, G. Liu, W. Zhou, Y. Wang, X. Dong, Angew. Chem. Int. Ed. 2024, e202416874.
- 20X. Chen, W. Zhang, C. Zhang, Y. Guo, A. Yu, S. Mei, C. J. Yao, Adv. Sci. 2024, 11, 2310239.
- 21C. Tang, B. Wei, W. Tang, Y. Hong, M. Guo, X. He, J. Hu, S. Jia, C. Fan, Chem. Eng. J. 2023, 474, 145114.
- 22S. Xu, H. Dai, S. Zhu, Y. Wu, M. Sun, Y. Chen, K. Fan, C. Zhang, C. Wang, W. Hu, eScience 2021, 1, 60–68.
- 23M. Zhang, R. Zhou, Y. Qin, X. Zhong, Q. Liu, X. Han, F. Zhang, X. Ou, J. Han, C.-S. Lee, Y. Tang, Energy Storage Mater. 2025, 74, 103879.
- 24T. Liang, Z. Chen, J. Yang, Y. Xu, Y. Li, Chem. Eng. J. 2024, 498, 155226.
- 25Y. Yan, P. Li, Y. Wang, L. Bi, T. W. Lau, M. Miao, S. Yang, Q. Xiong, F. R. Lin, H. L. Yip, J. Yin, C. Zhi, A. K. Y. Jen, Adv. Funct. Mater. 2024, 2312332.
- 26M. Miyazaki, H. Saito, K. Ogasawara, M. Kitano, H. Hosono, J. Am. Chem. Soc. 2023, 145, 25976–25982.
- 27Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Angew. Chem. Int. Ed. 2019, 131, 7094–7098.
- 28W. Zhang, T. Sun, T. Ma, W. Hao, Z. Zha, M. Cheng, Z. Tao, Chem. Eng. J. 2024, 491, 151946.
- 29X. Qiu, J. Xu, K. Zhou, X. Huang, M. Liao, Y. Cao, G. Zhou, P. Wei, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202304036.
- 30H. Cui, T. Wang, Z. Huang, G. Liang, Z. Chen, A. Chen, D. Wang, Q. Yang, H. Hong, J. Fan, C. Zhi, Angew. Chem. Int. Ed. 2022, 61, e202203453.
- 31J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave, G. M. Miyake, Science 2016, 352, 1082–1086.
- 32L. Luo, W. Ma, P. Dong, X. Huang, C. Yan, C. Han, P. Zheng, C. Zhang, J. Jiang, ACS Nano 2022, 16, 14590–14599.
- 33R. Shi, L. Liu, Y. Lu, Y. Li, S. Zheng, Z. Yan, K. Zhang, J. Chen, Adv. Energy Mater. 2021, 11, 2002917.
- 34D. Li, C. Wang, J. Hu, W. Tang, S. Jia, M. Guo, C. Fan, Chem. Eng. J. 2022, 449, 137745.
- 35C. Wang, W. Tang, S. Jia, Y. Yan, D. Li, Y. Hu, J. Gao, H. Wu, M. Wang, S. Liu, H. Lai, T. Zou, L. Xu, J. Xiong, C. Fan, Chem. Eng. J. 2021, 426, 131251.
- 36Y. Hu, Q. Yu, W. Tang, M. Cheng, X. Wang, S. Liu, J. Gao, M. Wang, M. Xiong, J. Hu, C. Liu, T. Zou, C. Fan, Energy Storage Mater. 2021, 41, 738–747.
- 37Z. Sun, K. Zhu, P. Liu, H. Li, L. Jiao, Adv. Funct. Mater. 2021, 31, 2107830.
- 38K. Fan, H. Ma, W. Tang, W. Li, S. Jia, J. Hu, X. Liu, Y. Zhang, C. Fan, Inorg. Chem. Front. 2024, 11, 5566–5578.
- 39W. Deng, X. Liang, X. Wu, J. Qian, Y. Cao, X. Ai, J. Feng, H. Yang, Sci. Rep. 2013, 3, 2671.
- 40J. Chen, H. Yin, Q. Xue, J. Zhang, X. Chen, X. Liu, R. He, L. Zhu, F. Wu, Adv. Funct. Mater. 2024, 34, 2411362.
- 41J. Zhang, J. Chen, F. Wu, G. Huang, X. Liu, R. He, L. Zhu, ACS Sustainable Chem. Eng. 2023, 11, 17849–17856.
- 42W. Hu, W. Zhang, A. Yu, C. Li, S. Mei, C.-J. Yao, Energy Storage Mater. 2025, 75, 104011.
- 43F. Ding, P. Ji, Z. Han, X. Hou, Y. Yang, Z. Hu, Y. Niu, Y. Liu, J. Zhang, X. Rong, Y. Lu, H. Mao, D. Su, L. Chen, Y.-S. Hu, Nat. Energy 2024, 9, 1529–1539.
- 44Y. Jin, P. M. L. Le, P. Gao, Y. Xu, B. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. Hu, L. Zhong, B. E. Matthews, R. Yi, C. Wang, X. Li, J. Liu, J.-G. Zhang, Nat. Energy 2022, 7, 718–725.
- 45H. Li, Y. Wang, X. Zhao, J. Jin, Q. Shen, J. Li, Y. Liu, X. Qu, L. Jiao, Y. Liu, ACS Energy Lett. 2023, 8, 3666–3675.
- 46D. Yang, L. Chen, X. Gao, Z. Zhao, Q. Lai, H. Chen, Y. Long, Q. Gu, Z. Liu, W. Luo, ACS Nano 2025, 19, 2834–2847.
- 47F. Ding, H. Wang, Q. Zhang, L. Zheng, H. Guo, P. Yu, N. Zhang, Q. Guo, F. Xie, R. Dang, X. Rong, Y. Lu, R. Xiao, L. Chen, Y.-S. Hu, J. Am. Chem. Soc. 2023, 145, 13592–13602.