Decatungstate-Driven Photocatalytic Pathways for Sustainable and Cleaner Recovery of Precious Metals
Ya Xie
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorTing Zhang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorHongxi Guo
Key Lab For Material Chemistry of Energy Conversion and Storage Ministry of Education, School of Chemistry and Chemical Engineering and National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 P.R. China
Search for more papers by this authorZijuan Ding
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorShuyuan Dong
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorYao Chen
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorJunhui Zhang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorShuhui Guan
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorCorresponding Author
Zhenmin Xu
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Han Yu
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhenfeng Bian
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYa Xie
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorTing Zhang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorHongxi Guo
Key Lab For Material Chemistry of Energy Conversion and Storage Ministry of Education, School of Chemistry and Chemical Engineering and National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 P.R. China
Search for more papers by this authorZijuan Ding
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorShuyuan Dong
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorYao Chen
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorJunhui Zhang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorShuhui Guan
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
Search for more papers by this authorCorresponding Author
Zhenmin Xu
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Han Yu
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhenfeng Bian
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
The recovery of precious metals from waste streams is crucial for sustainable resource utilization but remains hindered by traditional methods involving high toxicity, energy consumption, and environmental pollution. Here, we present a photocatalytic strategy employing hydrothermally synthesized decatungstate ([W10O32]4−) homogeneous ion catalysts to achieve simultaneous oxidation and reduction of precious metals under ambient conditions. This innovative approach integrates solvent-controlled reaction pathways, enabling efficient dissolution and recovery of precious metals from diverse waste sources, including electronic waste (e-waste), platinum membrane electrodes, and platinum-containing catalysts. The decatungstate catalyst exhibits exceptional performance, with an apparent quantum yield of 0.027%—nearly double that of commercial TiO2 (0.014%)—and achieves recovery efficiency of 80%–100% for platinum, surpassing 21 tested photocatalysts. The process adheres to a solid-phase dissolution model and remains against ionic interference. Time-dependent density functional theory (TD-DFT) calculations corroborate experimental UV–vis spectra, while electron-hole pair analyses elucidate atomic and molecular contributions to photocatalytic activity. Density functional theory (DFT) further validates the thermodynamic feasibility of the reaction pathways. By combining high efficiency, ambient operational conditions, and scalability, this work establishes decatungstates as a sustainable benchmark for green precious metal recovery, addressing the limitations of traditional methods and advancing innovation in resource circularity.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202505651-sup-0001-SupMat.docx21.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Ishida, F. McCormick, K. Smith-McCune, D. Hanahan, Cancer Cell 2010, 17, 574–583.
- 2J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552–556.
- 3S. H. Ali, Science 2015, 347, 1209–1209.
- 4R. M. Bullock, J. G. Chen, L. Gagliardi, P. J. Chirik, O. K. Farha, C. H. Hendon, C. W. Jones, J. A. Keith, J. Klosin, S. D. Minteer, R. H. Morris, A. T. Radosevich, T. B. Rauchfuss, N. A. Strotman, A. Vojvodic, T. R. Ward, J. Y. Yang, Y. Surendranath, Science 2020, 369, 786.
- 5M. She, Z. Wang, J. Chen, Q. Li, P. Liu, F. Chen, S. Zhang, J. Li, Coord. Chem. Rev. 2021, 432, 213712.
- 6X. H. Jiang, L. S. Zhang, H. Y. Liu, D. S. Wu, F. Y. Wu, L. Tian, L. L. Liu, J. P. Zou, S. L. Luo, B. B. Chen, Angew. Chem. Int. Ed. 2020, 59, 23112–23116.
- 7H. Hartley, Nature 1942, 150, 594–597.
- 8P. Peng, A. Shehabi, Nat. Sustain. 2022, 6, 93–102.
- 9B. K. Reck, T. E. Graedel, Science 2012, 337, 690–695.
- 10W. Lin, R. W. Zhang, S. S. Jang, C. P. Wong, J. I. Hong, Angew. Chem. Int. Ed. 2010, 49, 7929–7932.
- 11C. Yue, H. Sun, W. J. Liu, B. Guan, X. Deng, X. Zhang, P. Yang, Angew. Chem. Int. Ed. 2017, 56, 9331–9335.
- 12D. T. Sun, N. Gasilova, S. Yang, E. Oveisi, W. L. Queen, J. Am. Chem. Soc. 2018, 140, 16697–16703.
- 13Y. Yao, L. Lan, X. Li, X. Liu, Y. Ying, J. Ping, Small 2020, 16, e1907282.
- 14X. Jiang, B. Du, Y. Huang, J. Zheng, Nano Today 2018, 21, 106–125.
- 15A. T. Nakhjiri, H. Sanaeepur, A. Ebadi Amooghin, M. M. A. Shirazi, Desalination 2022, 527, 115510.
- 16Y. Chen, H. Shang, Y. Ren, Y. Yue, H. Li, Z. Bian, ACS EST Eng. 2022, 2, 1039–1052.
- 17S. Saha, M. Venkatesh, H. Basu, M. V. Pimple, R. K. Singhal, J. Environ. Chem. Eng. 2019, 7, 103134.
- 18Y. Dong, N. Mingtana, J. Zan, H. Lin, J. Environ. Manage 2023, 348, 119354.
- 19P. Shao, Z. Chang, M. Li, X. Lu, W. Jiang, K. Zhang, X. Luo, L. Yang, Nat. Commun. 2023, 14, 1365.
- 20Y. Su, A. Berbille, X. F. Li, J. Zhang, M. PourhosseiniAsl, H. Li, Z. Liu, S. Li, J. Liu, L. Zhu, Z. L. Wang, Nat. Commun. 2024, 15, 4196.
- 21H. Wu, Y. Wang, C. Tang, L. O. Jones, B. Song, X. Y. Chen, L. Zhang, Y. Wu, C. L. Stern, G. C. Schatz, W. Liu, J. F. Stoddart, Nat. Commun. 2023, 14, 1284.
- 22M. Mihailescu, A. Negrea, M. Ciopec, C. M. Davidescu, P. Negrea, N. Duteanu, G. Rusu, J. Chem. Phys. 2019, 9, 8757.
- 23Y. Ding, S. Zhang, B. Liu, H. Zheng, C. Chang, C. Ekberg, Resour., Conserv. Recycl. 2019, 141, 284–298.
- 24D. Dutta, R. Rautela, L. K. S. Gujjala, D. Kundu, P. Sharma, M. Tembhare, S. Kumar, Sci. Total Environ. 2023, 859, 160391.
- 25Y. Wei, W. Zhang, J. Gao, Green Chem. 2024, 26, 5684–5707.
- 26Y. Chen, Q. Qiao, J. Cao, H. Li, Z. Bian, Joule 2021, 5, 3097–3115.
- 27B. Niu, S. E. Q. Song, Z. Xu, B. Han, Y. Qin, Nat. Chem. Eng. 2024, 8, 569–586.
- 28H. Yang, J. Xu, H. Cao, J. Wu, D. Zhao, Nat. Commun. 2023, 14, 2726.
- 29P. Longchin, T. T. Gebremariam, N. Kunthakudee, A. Thoumrungroj, T. Sutthiphong, M. Hunsom, Sci. Rep. 2025, 15, 1806.
- 30S. Sangkhanak, N. Kunthakudee, M. Hunsom, P. Ramakul, K. Serivalsatit, K. Pruksathorn, Sci. Rep. 2023, 13, 22752.
- 31Y. Chen, S. Guan, H. Ge, X. Chen, Z. Xu, Y. Yue, H. Yamashita, H. Yu, H. Li, Z. Bian, Angew. Chem. Int. Ed. 2022, 61, e202213640.
- 32J. Cao, Y. Chen, H. Shang, X. Chen, Q. Qiao, H. Li, Z. Bian, ACS EST Eng. 2022, 2, 1445–1453.
- 33Q. Qiao, Y. Chen, Y. Wang, Y. Ren, J. Cao, F. Huang, Z. Bian, Chin. Chem. Lett. 2023, 34, 107394.
- 34Y. Chen, M. Xu, J. Wen, Y. Wan, Q. Zhao, X. Cao, Y. Ding, Z. L. Wang, H. Li, Z. Bian, Nat. Sustain. 2021, 4, 618–626.
- 35H. Shang, Y. Chen, S. Guan, Y. Wang, J. Cao, X. Wang, H. Li, Z. Bian, Nat. Chem. Eng. 2024, 1, 170–179.
10.1038/s44286-023-00026-w Google Scholar
- 36M. Wu, Y. Chen, Z. Guo, X. Wang, H. Zhang, T. Zhang, S. Guan, Z. Bian, Sci. Bull. 2024, 69, 2379–2386.
- 37J. Cao, Z. Xu, Y. Chen, S. Li, Y. Jiang, L. Bai, H. Yu, H. Li, Z. Bian, Angew. Chem. Int. Ed. 2023, 62, e202302202.
- 38T. Zhang, Z. Xu, Y. Xie, S. Dong, Z. Guo, W. Wang, Y. Chen, X. Qian, H. Yu, Z. Bian, Angew. Chem. Int. Ed. 2025, 64, e202412997.
- 39L. Yang, M. Xu, H. Wang, D. Zhang, Z. Zhou, ChemCatChem 2024, 16, e202400006.
- 40X. Chen, H. Wu, X. Shi, L. Wu, Nanoscale 2023, 15, 9242–9255.
- 41W. Liu, W. Mu, M. Liu, X. Zhang, H. Cai, Y. Deng, Nat. Commun. 2014, 5, 3208–3215.
- 42N. I. Gumerova, A. Rompel, Nat. Rev. Chem. 2018, 2, 0112.
- 43A. Khan, W. Li, X. Ma, M. Dong, X. Liu, C. Ren, J. Photochem. Photobiol. A: Chem. 2023, 443, 114854.
- 44S. Bernhardt, J. Düring, S. Haschke, M. K. S. Barr, L. Stiegler, P. Schühle, J. Bachmann, A. Hirsch, F. Gröhn, Adv. Mater. Interfaces 2021, 8, 2002130–2002144.
- 45Q. Tang, X. An, H. Lan, H. Liu, J. Qu, Appl. Catal., B 2020, 268, 118394.
- 46B. Yang, Z. Fu, A. Su, J. She, M. Chen, S. Tang, W. Hu, C. Zhang, Y. Liu, Appl. Catal., B 2019, 242, 249–257.
- 47X. An, S. Wu, Q. Tang, H. Lan, Y. Tang, H. Liu, J. Qu, Catal. Commun. 2018, 112, 63–67.
- 48H. Li, H. Sun, W. Qi, M. Xu, L. Wu, Angew. Chem. Int. Ed. 2007, 46, 1300–1303.
- 49J. Li, Y. Feng, F. Fu, X. Xin, G. Yang, H. Lv, Chin. Chem. Lett. 2024, 35, 108736.
- 50H. Li, W. Chen, Y. Sun, Z. Yuan, W. Lei, M. Yang, P. Ma, J. Wang, J. Niu, Fuel 2024, 356, 129647.
- 51Q. Shen, C. J. Gómez-García, W. Sun, X. Lai, H. Pang, H. Ma, Green Chem. 2021, 23, 3104–3114.
- 52M. Liao, T. Wang, T. Zuo, L. Meng, M. Yang, Y. X. Chen, T. Hu, Y. Xie, Inorg. Chem. 2021, 60, 13136–13149.
- 53A. Solé-Daura, Y. Benseghir, M. H. Ha-Thi, M. Fontecave, P. Mialane, A. Dolbecq, C. Mellot-Draznieks, ACS Catal. 2022, 12, 9244–9255.
- 54J. Du, Y. Y. Ma, W. J. Cui, S. M. Zhang, Z. G. Han, R. H. Li, X. Q. Han, W. Guan, Y. H. Wang, Y. Q. Li, Y. Liu, F. Y. Yu, K. Q. Wei, H. Q. Tan, Z. H. Kang, Y. G. Li, Appl. Catal., B 2022, 318, 121812.
- 55S. Barman, S. S. Sreejith, S. Garai, R. Pochamoni, S. Roy, ChemPhotoChem 2019, 3, 93–100.
- 56Q. Liu, Y. Ding, Y. Gao, Y. Yang, L. Gao, Z. Pan, C. Xia, Org. Lett. 2022, 24, 7983–7987.
- 57P. J. Sarver, N. B. Bissonnette, D. W. C. MacMillan, J. Am. Chem. Soc. 2021, 143, 9737–9743.
- 58P. J. Sarver, V. Bacauanu, D. M. Schultz, D. A. DiRocco, Y. H. Lam, E. C. Sherer, D. W. C. MacMillan, Nat. Chem. 2020, 12, 459–467.
- 59G. Laudadio, Y. Deng, K. V. D. Wal, D. Ravelli, M. Nuño, M. Fagnoni, D. Guthrie, Y. Sun, T. Noël, Science 2020, 369, 92–96.
- 60D. Ravelli, M. Fagnoni, T. Fukuyama, T. Nishikawa, I. Ryu, ACS Catal. 2018, 8, 701–713.
- 61X. Gu, Y. A. Zhang, S. Zhang, L. Wang, X. Ye, G. Occhialini, J. Barbour, B. L. Pentelute, A. E. Wendlandt, Nature 2024, 634, 352–358.
- 62I. B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan, Nature 2018, 560, 70–75.
- 63G. Laudadio, S. Govaerts, Y. Wang, D. Ravelli, H. F. Koolman, M. Fagnoni, S. W. Djuric, T. Noel, Angew. Chem. Int. Ed. 2018, 57, 4078–4082.
- 64D. M. Schultz, F. Levesque, D. A. DiRocco, M. Reibarkh, Y. Ji, L. A. Joyce, J. F. Dropinski, H. Sheng, B. D. Sherry, I. W. Davies, Angew. Chem. Int. Ed. 2017, 56, 15274–15278.
- 65Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 461–467.
- 66T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 67T. Lu, J. Chem. Phys. 2024, 161, 082503.
- 68W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics Modell. 1996, 14, 33–38.
- 69L. S. Zhang, X. H. Jiang, Z. A. Zhong, L. Tian, Q. Sun, Y. T. Cui, X. Lu, J. P. Zou, S. L. Luo, Angew. Chem. Int. Ed. 2021, 60, 21751–21755.
- 70S. Das, T. Zhang, G. J. Clarkson, M. Walker, X. Qian, X. Long, Y. Zhao, R. I. Walton, ChemSusChem 2024, e202402319.
- 71T. Zhang, X. Li, J. Wang, Y. Miao, T. Wang, X. Qian, Y. Zhao, J. Hazard. Mater. 2023, 450, 131054.
- 72L. L. Zheng, L. Tian, L. S. Zhang, J. Yu, Y. Chen, Q. Fu, X. Z. Liu, D. S. Wu, J. P. Zou, ACS Catal. 2024, 14, 2134–2143.
- 73Y. Shen, C. Zhang, F. Du, T. Zhang, Y. Zhan, H. Tian, C. M. Li, ACS Appl. Nano Mater. 2023, 6, 3750–3757.
- 74Q. Tang, B. Wu, X. Huang, W. Ren, L. Liu, L. Tian, Y. Chen, L. S. Zhang, Q. Sun, Z. Kang, T. Ma, J. P. Zou, Nat. Commun. 2024, 15, 9549.
- 75A. Su, M. Chen, Z. Fu, B. Yang, J. She, F. Wan, C. Zhang, Y. Liu, Inorg. Chem. 2020, 59, 7520–7530.
- 76E. V. Guseva, T. E. Busygina, L. S. Gracheva, V. K. Polovnyak, R. A. Khasanshin, E. G. Yarkova, R. A. Yusupov, Russ. J. Gen. Chem. 2001, 71, 217–221.
- 77I. A. Oxton, O. Knop, M. Falk, Can. J. Chem. 1975, 53, 18.
- 78T. Yamase, N. Takabayashi, M. Kaji, J. Chem. Soc., Dalton Trans. 1984, 5, 793.
- 79M. Kan, M. Tao, W. Zhuang, S. Wu, L. Wan, Y. Wang, J. Zhang, Angew. Chem. Int. Ed. 2025, e202423766.
- 80B. Li, K. Kumar, I. Roy, A. V. Morozov, O. V. Emelyanova, L. Zhang, T. Koc, S. Belin, J. Cabana, R. Dedryvere, A. M. Abakumov, J. M. Tarascon, Nat. Mater. 2022, 21, 1165–1174.
- 81X. Chen, C. Xu, T. Wang, C. Zhou, J. Du, Z. Wang, H. Xu, T. Xie, G. Bi, J. Jiang, X. Zhang, J. N. Demas, C. O. Trindle, Y. Luo, G. Zhang, Angew. Chem. Int. Ed. 2016, 55, 9872–9876.
- 82X. Qian, M. Ren, M. Fang, M. Kan, D. Yue, Z. Bian, H. Li, J. Jia, Y. Zhao, Appl. Catal., B 2018, 231, 108–114.