Spatially Engineering the Internal Microstructure of a Single Crystal via Nanoparticle Occlusion
Bing Yu
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.
Search for more papers by this authorPei Liu
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.
Search for more papers by this authorJingjing He
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.
Search for more papers by this authorXiaojie Li
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorXia Sun
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorBoxiang Peng
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorJiahao Zhang
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorCorresponding Author
Prof. Yin Ning
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
E-mail: [email protected]
Search for more papers by this authorBing Yu
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.
Search for more papers by this authorPei Liu
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.
Search for more papers by this authorJingjing He
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
These authors contributed equally to this work.
Search for more papers by this authorXiaojie Li
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorXia Sun
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorBoxiang Peng
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorJiahao Zhang
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorCorresponding Author
Prof. Yin Ning
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632 China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
The spatially controlled occlusion of polymeric nanoparticles into cuprous oxide (Cu2O) systematically alters lattice distortion, oxygen vacancy content, and catalytic efficiency in the resulting composite crystals, offering a robust framework for the development of advanced functional composite materials.
Abstract
Single crystals are characterized by their continuous, highly ordered atomic lattices. Therefore, introducing impurities or structural defects into their matrices presents a major challenge, particularly in a spatially-controlled manner. Herein, we demonstrate a nanoparticle occlusion approach that enables the microstructure of cuprous oxide (Cu2O) single crystals to be engineered in a tunable way. This is achieved by directly incorporating poly(glycerol monomethacrylate)51-block-poly(benzyl methacrylate)100 [G51-B100] diblock copolymer nanoparticles into growing Cu2O crystals, leading to the formation of G51-B100@Cu2O composite crystals with structural defects localized at the G51-B100/Cu2O interfaces. The spatial distribution of these defects can be systematically engineered, ranging from the surface region to the entire crystal. Remarkably, the G51-B100 occlusion endows the resulting composite crystals with excellent catalytic performance in dye degradation under dark conditions, with activity correlated to the extent of nanoparticle occlusion. This study offers a unique strategy to create interfacial defects in single crystals, imparting emerging functionalities to the resulting composites.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article
Supporting Information
Filename | Description |
---|---|
anie202505637-sup-0001-SuppMat.docx10.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Kittel, P. McEuen, Introduction to solid State Physics, Wiley, New Jersey 2018.
- 2W. K. Burton, N. Cabrera, F. C. Frank, Philos. Trans. R. Soc. Lond. A 1951, 243, 299–358.
- 3E. J. Mittemeijer, in Fundamentals of Materials Science, Springer, Berlin, Heidelberg, 2011, pp. 201–244.
10.1007/978-3-642-10500-5 Google Scholar
- 4W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 2020, 32, 1907879.
- 5Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, S. Wang, Adv. Mater. 2020, 32, 1905923.
- 6J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. M. Teridi, W. Sigmund, Chem. Soc. Rev. 2015, 44, 8424–8442.
- 7J. Wu, X. Li, W. Shi, P. Ling, Y. Sun, X. Jiao, S. Gao, L. Liang, J. Xu, W. Yan, Angew. Chem. Int. Ed. 2018, 57, 8719–8723 Angew. Chem. 2018, 130, 8855–8859.
- 8V. Sridhar, H.-J. Kim, J.-H. Jung, C. Lee, S. Park, I.-K. Oh, ACS Nano 2012, 6, 10562–10570.
- 9J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Adv. Funct. Mater. 2018, 28, 1801983.
- 10D. C. Cronemeyer, Phys. Rev. 1959, 113, 1222–1226.
- 11C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 2005, 109, 11414–11419.
- 12Z. Zhao, H. Tan, H. Zhao, Y. Lv, L.-J. Zhou, Y. Song, Z. Sun, Chem. Commun. 2014, 50, 2755–2757.
- 13J. Xu, Z. Tian, G. Yin, T. Lin, F. Huang, Dalton Trans. 2017, 46, 1047–1051.
- 14K. Zhao, L. Zhang, J. Wang, Q. Li, W. He, J. J. Yin, J. Am. Chem. Soc. 2013, 135, 15750–15753.
- 15T. Takata, K. Domen, J. Phys. Chem. C 2009, 113, 19386–19388.
- 16A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 2012, 134, 7600–7603.
- 17X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746–750.
- 18J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, ACS Appl. Mater. Inter. 2012, 4, 4024–4030.
- 19H. Li, F. Qin, Z. Yang, X. Cui, J. Wang, L. Zhang, J. Am. Chem. Soc. 2017, 139, 3513–3521.
- 20H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Angew. Chem. Int. Ed. 2018, 57, 122–138.
- 21N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, J. Zhu, L. Song, J. Jiang, Y. Xiong, J. Am. Chem. Soc. 2016, 138, 8928–8935.
- 22Y. Ning, S. P. Armes, Acc. Chem. Res. 2020, 53, 1176–1186.
- 23A. G. Shtukenberg, M. D. Ward, B. Kahr, Chem. Rev. 2017, 117, 14042–14090.
- 24Z. Lv, R. Lin, Y. Yang, K. Lan, C.-T. Hung, P. Zhang, J. Wang, W. Zhou, Z. Zhao, Z. Wang, J. Zou, T. Wang, T. Zhao, Y. Xu, D. Chao, W. Tan, B. Yan, Q. Li, D. Zhao, X. Li, Nat. Chem. 2025, 17, 177–185.
- 25A. N. Kulak, M. Semsarilar, Y.-Y. Kim, J. Ihli, L. A. Fielding, O. Cespedes, S. P. Armes, F. C. Meldrum, Chem. Sci. 2014, 5, 738–743.
- 26O. Nahi, A. N. Kulak, T. Kress, Y.-Y. Kim, O. G. Grendal, M. J. Duer, O. J. Cayre, F. C. Meldrum, Chem. Sci. 2021, 12, 9839–9850.
- 27Y. Y. Kim, M. Semsarilar, J. D. Carloni, K. R. Cho, A. N. Kulak, I. Polishchuk, C. T. HendleyIV, P. J. Smeets, L. A. Fielding, B. Pokroy, Adv. Funct. Mater. 2016, 26, 1382–1392.
- 28Y.-Y. Kim, R. Darkins, A. Broad, A. N. Kulak, M. A. Holden, O. Nahi, S. P. Armes, C. C. Tang, R. F. Thompson, F. Marin, Nat. Commun. 2019, 10, 5682.
- 29Y.-Y. Kim, J. D. Carloni, B. Demarchi, D. Sparks, D. G. Reid, M. E. Kunitake, C. C. Tang, M. J. Duer, C. L. Freeman, B. Pokroy, Nat. Mater. 2016, 15, 903–910.
- 30Y.-Y. Kim, K. Ganesan, P. Yang, A. N. Kulak, S. Borukhin, S. Pechook, L. Ribeiro, R. Kröger, S. J. Eichhorn, S. P. Armes, Nat. Mater. 2011, 10, 890–896.
- 31Y.-Y. Kim, L. Ribeiro, F. Maillot, O. Ward, S. J. Eichhorn, F. C. J. A. M. Meldrum, Adv. Mater. 2010, 22, 2082–2086.
- 32Y. Ning, L. A. Fielding, L. P. Ratcliffe, Y.-W. Wang, F. C. Meldrum, S. P. Armes, J. Am. Chem. Soc. 2016, 138, 11734–11742.
- 33Y. Ning, L. Han, M. J. Derry, F. C. Meldrum, S. P. Armes, J. Am. Chem. Soc. 2019, 141, 2557–2567.
- 34Y. Ning, L. Han, M. Douverne, N. J. W. Penfold, M. J. Derry, F. C. Meldrum, S. P. Armes, J. Am. Chem. Soc. 2019, 141, 2481–2489.
- 35N. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174–10185.
- 36Y. Dong, J. Chi, Z. Ren, B. Xiong, Z. Liu, W. Zhang, L. Wang, S. Fujii, S. P. Armes, Y. Ning, Angew. Chem. Int. Ed. 2023, 62, e202300031.
- 37K. R. Cho, Y.-Y. Kim, P. Yang, W. Cai, H. Pan, A. N. Kulak, J. L. Lau, P. Kulshreshtha, S. P. Armes, F. C. Meldrum, Nat. Commun. 2016, 7, 10187.
- 38C. T. Hendley IV, L. A. Fielding, E. R. Jones, A. J. Ryan, S. P. Armes, L. A. Estroff, J. Am. Chem. Soc. 2018, 140, 7936–7945.
- 39Y. Ning, L. A. Fielding, J. Nutter, A. N. Kulak, F. C. Meldrum, S. P. Armes, Angew. Chem. Int. Ed. 2019, 58, 4302–4307.
- 40A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, A. K. Tyagi, Eur. J. Inorg. Chem. 2013, 2013, 2640–2651.
- 41S. Borukhin, L. Bloch, T. Radlauer, A. H. Hill, A. N. Fitch, B. Pokroy, Adv. Funct. Mater. 2012, 22, 4216–4224.
- 42B. Pokroy, J. P. Quintana, E. a. N. Caspi, A. Berner, E. Zolotoyabko, Nat. Mater. 2004, 3, 900–902.
- 43B. Pokroy, A. Fitch, E. Zolotoyabko, Adv. Mater. 2006, 18, 2363–2368.
- 44Z. Tong, Y. Xie, M. C. Arno, Y. Zhang, I. Manners, R. K. O'Reilly, A. P. Dove, Nat. Chem. 2023, 15, 824–831.
- 45D. Marrocchelli, S. R. Bishop, H. L. Tuller, B. Yildiz, Adv. Funct. Mater. 2012, 22, 1958–1965.
- 46S. J. Hong, A. V. Virkar, J. Am. Ceram. Soc. 1995, 78, 433–439.
- 47B. Santara, P. Giri, K. Imakita, M. Fujii, J. Phys. D: Appl. Phys. 2014, 47, 215302.
- 48C. Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, Y. H. Ng, Angew. Chem. Int. Ed. 2018, 57, 13613–13617.
- 49K. X. Yao, X. M. Yin, T. H. Wang, H. C. Zeng, J. Am. Chem. Soc. 2010, 132, 6131–6144.
- 50T. J. Frankcombe, Y. Liu, Chem. Mater. 2023, 35, 5468–5474.
- 51M. Smith, L. Scudiero, J. Espinal, J.-S. McEwen, M. Garcia-Perez, Carbon 2016, 110, 155–171.
- 52R. Xu, H. C. Zeng, Langmuir 2004, 20, 9780–9790.
- 53B.-Z. Sun, W.-K. Chen, J.-D. Zheng, C.-H. Lu, Appl. Surf. Sci. 2008, 255, 3141–3148.
- 54F. Zhang, G. Dong, M. Wang, Y. Zeng, C. Wang, Appl. Surf. Sci. 2018, 444, 559–568.
- 55S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Energy Mater. 2020, 10, 1901973.
- 56M. Lyu, Y. Liu, Y. Zhi, C. Xiao, B. Gu, X. Hua, S. Fan, Y. Lin, W. Bai, W. Tong, J. Am. Chem. Soc. 2015, 137, 15043–15048.
- 57A. Brif, G. Ankonina, C. Drathen, B. Pokroy, Adv. Mater. 2014, 26, 477–481.
- 58A. Lang, A. Brif, I. Polishchuk, A. N. Fitch, J. Feldmann, B. Pokroy, Adv. Optical Mater. 2022, 10, 2200203.
- 59I. Polishchuk, N. Bianco-Stein, A. Lang, M. Kurashvili, M. Caspary Toroker, A. Katsman, J. Feldmann, B. Pokroy, Adv. Funct. Mater. 2020, 30, 1910405.
- 60B. Sun, H. Li, X. Li, X. Liu, C. Zhang, H. Xu, X. S. Zhao, Ind. Eng. Chem. Res. 2018, 57, 14011–14021.
- 61A. Onsten, J. Weissenrieder, D. Stoltz, S. Yu, M. Göthelid, U. O. Karlsson, J. Phys. Chem. C 2013, 117, 19357–19364.
- 62R. Zhang, H. Liu, H. Zheng, L. Ling, Z. Li, B. Wang, Appl. Surf. Sci. 2011, 257, 4787–4794.
- 63Y. Namai, K.-i. Fukui, Y. Iwasawa, J. Phys. Chem. B 2003, 107, 11666–11673.
- 64Y. Namai, K.-I. Fukui, Y. Iwasawa, Catal. Today 2003, 85, 79–91.
- 65S. Lee, W. Jin, S. H. Kim, S. H. Joo, G. Nam, P. Oh, Y. K. Kim, S. K. Kwak, J. Cho, Angew. Chem. Int. Ed. 2019, 58, 10478–10485.
- 66B. Song, H.-S. Park, J. Suh, J. Seo, J. Kim, C.-H. Yang, ACS Nano 2024, 18, 1948–1957.
- 67C. Qiu, J. Sun, M. Li, C. Mao, R. Song, Z. Zhang, D. D. Perovic, J. Y. Howe, L. Wang, G. A. Ozin, J. Am. Chem. Soc. 2024, 146, 33997–34007.
- 68G. Di Martino, A. Demetriadou, W. Li, D. Kos, B. Zhu, X. Wang, B. de Nijs, H. Wang, J. MacManus-Driscoll, J. J. Baumberg, Nat. Electron. 2020, 3, 687–693.