Photovoltaic Absorber “Glues” for Efficient Bifacial Selenium Photovoltaics
Xiaoyan An
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Zongbao Li
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430220 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXia Wang
Hubei Engineering Research Center for Intelligent Detection and Identification of Complex Parts, Wuhan Vocational College of Software and Engineering, Wuhan, 430205 China
Search for more papers by this authorWenbo Lu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXin Wen
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorMingjie Feng
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorQingxiang Liu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhouqing Wei
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJin-Song Hu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Ding-Jiang Xue
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaoyan An
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Zongbao Li
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430220 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXia Wang
Hubei Engineering Research Center for Intelligent Detection and Identification of Complex Parts, Wuhan Vocational College of Software and Engineering, Wuhan, 430205 China
Search for more papers by this authorWenbo Lu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXin Wen
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorMingjie Feng
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorQingxiang Liu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhouqing Wei
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJin-Song Hu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Ding-Jiang Xue
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A glue-bonding strategy using high-viscosity molten selenium (Se) as an adhesive is reported to bond two fluorine-doped tin oxide (FTO) glasses, creating bifacial solar cells without magnetron sputtering. The Se cells exhibit a bifaciality factor of 90.1%, with efficiencies of 8.61% under 1-sun with an albedo of 0.3 and 26.17% under 1000-lux indoor illumination with an albedo of 0.8.
Abstract
Bifacial solar cells hold great potential for achieving higher power output than conventional monofacial devices by harvesting solar irradiance from both their front and rear surfaces. However, almost all currently reported bifacial devices typically require a sputtered rear transparent conducting oxide electrode, which can damage the underlying layers due to plasma effects during the deposition process. Here, we report a glue-bonding strategy that uses a high-viscosity photovoltaic absorber slurry—in the case of molten selenium (Se)—as the adhesive to bond two charge-transport layer-deposited commercial fluorine-doped tin oxide glasses, directly creating bifacial solar cells without the use of magnetron sputtering. We find that molten Se exhibits relatively high viscosity, high stability, and Newtonian fluid characteristics, facilitating film formation using this strategy. The resulting bifacial Se solar cells exhibit a bifaciality factor of 90.1%, surpassing all types of conventional thin-film solar cells. These cells achieve efficiencies of 8.61% under 1-sun illumination with an albedo of 0.3 and 26.17% under 1000-lux indoor illumination with an albedo of 0.8, with no efficiency loss after 1000 h of ambient storage.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202505297-sup-0001-SuppMat.docx6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. De Bastiani, A. S. Subbiah, M. Babics, E. Ugur, L. Xu, J. Liu, T. G. Allen, E. Aydin, S. De Wolf, Joule 2022, 6, 1431–1445.
- 2Z. Song, C. Li, L. Chen, Y. Yan, Adv. Mater. 2022, 34, 2106805.
- 3S. Gan, H. Sun, C. Li, D. Dou, L. Li, Sci. Bull. 2023, 68, 2247–2267.
- 4H. Gu, C. Fei, G. Yang, B. Chen, M. A. Uddin, H. Zhang, Z. Ni, H. Jiao, W. Xu, Z. Yan, J. Huang, Nat. Energy 2023, 8, 675–684.
- 5Q. Jiang, Z. Song, R. C. Bramante, P. F. Ndione, R. Tirawat, J. J. Berry, Y. Yan, K. Zhu, Joule 2023, 7, 1543–1555.
- 6M. De Bastiani, A. J. Mirabelli, Y. Hou, F. Gota, E. Aydin, T. G. Allen, J. Troughton, A. S. Subbiah, F. H. Isikgor, J. Liu, L. Xu, B. Chen, E. Van Kerschaver, D. Baran, B. Fraboni, M. F. Salvador, U. W. Paetzold, E. H. Sargent, S. De Wolf, Nat. Energy 2021, 6, 167–175.
- 7F. Fu, T. Feurer, T. Jäger, E. Avancini, B. Bissig, S. Yoon, S. Buecheler, A. N. Tiwari, Nat. Commun. 2015, 6, 8932.
- 8S.-C. Yang, T.-Y. Lin, M. Ochoa, H. Lai, R. Kothandaraman, F. Fu, A. N. Tiwari, R. Carron, Nat. Energy 2023, 8, 40–51.
- 9J. Zhang, X.-G. Hu, K. Ji, S. Zhao, D. Liu, B. Li, P.-X. Hou, C. Liu, L. Liu, S. D. Stranks, H.-M. Cheng, S. R. P. Silva, W. Zhang, Nat. Commun. 2024, 15, 2245.
- 10W. A. Dunlap-Shohl, T. Li, D. B. Mitzi, ACS Appl. Energy Mater. 2019, 2, 5083–5093.
- 11R. Schmager, J. Roger, J. A. Schwenzer, F. Schackmar, T. Abzieher, M. Malekshahi Byranvand, B. Abdollahi Nejand, M. Worgull, B. S. Richards, U. W. Paetzold, Adv. Funct. Mater. 2020, 30, 1907481.
- 12B. Yan, X. Liu, W. Lu, M. Feng, H.-J. Yan, Z. Li, S. Liu, C. Wang, J.-S. Hu, D.-J. Xue, Sci. Adv. 2022, 8, eadc9923.
- 13R. Nielsen, A. Crovetto, A. Assar, O. Hansen, I. Chorkendorff, P. C. K. Vesborg, PRX Energy 2024, 3, 013013.
10.1103/PRXEnergy.3.013013 Google Scholar
- 14R. Li, X. Chen, S. Bai, W. Xu, C. Xia, B. Zhang, Z. Jia, Y. Liu, H. Liu, X. Tian, Q. Cui, Q. Lin, Chem. Mater. 2024, 36, 5846–5854.
- 15W. Lu, M. Feng, Z. Li, B. Yan, S. Wang, X. Wen, X. An, S. Liu, J.-S. Hu, D.-J. Xue, Joule 2024, 8, 1430–1442.
- 16W. Lu, Z. Li, M. Feng, H.-J. Yan, B. Yan, L. Hu, X. Zhang, S. Liu, J.-S. Hu, D.-J. Xue, Sci. China Chem. 2022, 65, 2197–2204.
- 17T. H. Youngman, R. Nielsen, A. Crovetto, B. Seger, O. Hansen, I. Chorkendorff, P. C. K. Vesborg, Sol. RRL 2021, 5, 2100111.
- 18Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganäs, F. Gao, J. Hou, Nat. Energy 2019, 4, 768–775.
- 19M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest, K. Zhu, Nat. Energy 2017, 2, 17038.
- 20M. F. Rahman, J. Hossain, A. Kuddus, S. Tabassum, M. H. K. Rubel, M. M. Rahman, Y. Moriya, H. Shirai, A. B. M. Ismail, J. Mater. Sci. 2020, 55, 7715–7730.
- 21T. Zhang, Y. Yang, D. Liu, S. C. Tse, W. Cao, Z. Feng, S. Chen, L. Qian, Energy Environ. Sci. 2016, 9, 3674–3681.
- 22X. Shi, L. Huang, D. Pan, J. Power Sources 2020, 473, 228529.
- 23S. Chen, S. Jung, H. J. Cho, N.-H. Kim, S. Jung, J. Xu, J. Oh, Y. Cho, H. Kim, B. Lee, Y. An, C. Zhang, M. Xiao, H. Ki, Z.-G. Zhang, J.-Y. Kim, Y. Li, H. Park, C. Yang, Angew. Chem. Int. Ed. 2018, 57, 13277–13282.
- 24H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Grätzel, L. Han, Nature 2017, 550, 92–95.
- 25S. Ho, C. U. Vyas, P. Pratik, K. D. Patel, M. Somnath, Mediterr. J. Chem. 2018, 7, 115–124.
- 26V. K. Kapur, A. Bansal, P. Le, O. I. Asensio, Thin Solid Films 2003 431-432, 53–57.
- 27T. Li, W. A. Dunlap-Shohl, D. B. Mitzi, ACS Appl. Energy Mater. 2020, 3, 9493–9497.
- 28S. P. Dunfield, D. T. Moore, T. R. Klein, D. M. Fabian, J. A. Christians, A. G. Dixon, B. Dou, S. Ardo, M. C. Beard, S. E. Shaheen, J. J. Berry, M. F. A. M. van Hest, ACS Energy Lett. 2018, 3, 1192–1197.
- 29T. K. Todorov, S. Singh, D. M. Bishop, O. Gunawan, Y. S. Lee, T. S. Gershon, K. W. Brew, P. D. Antunez, R. Haight, Nat. Commun. 2017, 8, 682.
- 30I. Hadar, T.-B. Song, W. Ke, M. G. Kanatzidis, Adv. Energy Mater. 2019, 0, 1802766.
- 31W. Liu, F. Yu, Y. Wang, T. Michinobu, W. Fan, Q. Zhang, Sol. RRL 2020, 4, 2000425.
- 32W. Liu, F. Yu, W. Fan, W.-s. Li, Q. Zhang, Small 2021, 17, 2101226.
- 33R. Nielsen, T. H. Youngman, H. Moustafa, S. Levcenco, H. Hempel, A. Crovetto, T. Olsen, O. Hansen, I. Chorkendorff, T. Unold, P. C. K. Vesborg, J. Mater. Chem. A 2022, 10, 24199–24207.
- 34R. Nielsen, T. H. Hemmingsen, T. G. Bonczyk, O. Hansen, I. Chorkendorff, P. C. K. Vesborg, ACS Appl. Energy Mater. 2023, 6, 8849–8856.
- 35R. S. Nielsen, M. Schleuning, O. Karalis, T. H. Hemmingsen, O. Hansen, I. Chorkendorff, T. Unold, P. C. K. Vesborg, ACS Appl. Energy Mater. 2024, 7, 5209–5215.
- 36J. G. A. Speight; McGraw Hill Book Co., 2005.
- 37M. Marple, J. Badger, I. Hung, Z. Gan, K. Kovnir, S. Sen, Angew. Chem. Int. Ed. 2017, 56, 9777–9781.
- 38W. Lu, Z. Li, M. Feng, L. Zheng, S. Liu, B. Yan, J.-S. Hu, D.-J. Xue, J. Am. Chem. Soc. 2024, 146, 6345–6351.
- 39C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry; Pearson Education Limited, Harlow 2012.
- 40W. Lu, Z. Li, M. Feng, J. Wei, X. Wen, X. An, Q. Wei, Y. L. J.-S. Hu, D.-J. Xue, Angew. Chem. Int. Ed. 2025, 64, e202413429.
- 41Q. Liu, X. Wang, Z. Li, W. Lu, X. Wen, X. An, M. Feng, H.-J. Yan, J.-S. Hu, D.-J. Xue, Adv. Mater. 2025, 37, 2410835.
- 42Z.-P. Huang, J. Huang, Z.-H. Huang, Y.-X. Chen, H. Li, L.-M. Lin, Z.-G. Huang, S.-Y. Chen, G.-L. Chen, J. Alloy. Compd. 2025, 1012, 178473.
- 43J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2017, 2, 17042.
- 44Y. Cui, L. Hong, T. Zhang, H. Meng, H. Yan, F. Gao, J. Hou, Joule 2021, 5, 1016–1023.
- 45B. Yu, Z. Chen, P. Shang, J. Yang, Energ. Buildings 2008, 40, 945–951.
- 46Z. Gao, J. Wang, H. Xiao, M. Abdel-Shakour, T. Liu, S. Zhang, J. Huang, D.-J. Xue, S. Yang, X. Meng, Adv. Mater. 2024, 36, 2403413.