Cobalt-Metalated 1D Perylene Diimide Carbon-Organic Framework for Enhanced Photocatalytic α-C(sp3)─H Activation and CO2 Reduction
Chao Zhu
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Both authors contributed equally to this work.
Search for more papers by this authorChengtao Gong
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
Both authors contributed equally to this work.
Search for more papers by this authorDuojun Cao
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorLi-Li Ma
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorDongdong Liu
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorLiyan Zhang
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorCorresponding Author
Yang Li
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yongwu Peng
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guozan Yuan
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChao Zhu
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Both authors contributed equally to this work.
Search for more papers by this authorChengtao Gong
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
Both authors contributed equally to this work.
Search for more papers by this authorDuojun Cao
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorLi-Li Ma
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorDongdong Liu
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorLiyan Zhang
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
Search for more papers by this authorCorresponding Author
Yang Li
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yongwu Peng
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guozan Yuan
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A one-dimensional ABC-stacking covalent organic framework (PP-COF), integrating perylene diimide (PDI) as a photosensitizer and 1,10-phenanthroline as a metal-coordination site, was synthesized. Post-synthetic cobalt metalation afforded PP-COF-Co, which enhanced single oxygen (1O2) generation and electron-hole pair separation, significantly boosting its photocatalytic performance in α-C(sp3)─H activation and CO2 reduction.
Abstract
The photocatalytic activation of inert C(sp3)─H bonds in saturated aza-heterocycles provides a direct and efficient route to high-value α-amino amides but remains challenging due to intrinsically high bond dissociation energies. Herein, we report a cobalt-metalated, one-dimensional ABC-stacking covalent organic framework (PP-COF-Co), integrating perylene diimide (PDI) as a photosensitizer and 1,10-phenanthroline as a metal coordination site. Cobalt metalation significantly enhances photocatalytic efficiency, enabling the α-C(sp3)─H carbamoylation of saturated aza-heterocycles with yields of up to 91%, far surpassing its non-metalated counterpart (59%). This enhancement arises from the synergistic interplay between the PDI units and cobalt centers, which promote electron-hole pair separation and enhance singlet oxygen (1O2) generation. Moreover, PP-COF-Co exhibits a 57-fold increase in photocatalytic CO2 reduction activity compared to its pristine analogue. This work highlights the critical role of metalation in modulating charge dynamics within COF-based photocatalysts and offers insights into the development of next-generation materials for sustainable catalysis.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
anie202504348-supp-0001-SuppMat.pdf5.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J.-P. Wan, L. Gan, Y. Liu, Org. Biomol. Chem. 2017, 15, 9031–9043.
- 2A. C. Boukis, B. Monney, M. A. R. Meier, Beilstein, J. Org. Chem. 2017, 13, 54–62.
- 3L. Weber, Curr. Med. Chem. 2002, 9, 2085–2093.
- 4M. Rueping, C. Vila, Org. Lett. 2013, 15, 2092–2095.
- 5X. Ye, C. Xie, Y. Pan, L. Han, T. Xie, Org. Lett. 2010, 12, 4240–4243.
- 6N.-Y. Huang, Y.-T. Zheng, D. Chen, Z.-Y. Chen, C.-Z. Huang, Q. Xu, Chem. Soc. Rev. 2023, 52, 7949–8004.
- 7H.-G. Jin, P.-C. Zhao, Y. Qian, J.-D. Xiao, Z.-S. Chao, H.-L. Jiang, Chem. Soc. Rev. 2024, 53, 9378–9418.
- 8Y.-Y. Liu, J. Liu, L.-Q. Lu, W.-J. Xiao, Top. Curr. Chem. 2019, 377, 37.
- 9A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 2018, 47, 8134–8172.
- 10M. Lu, M. Zhang, J. Liu, Y. Chen, J.-P. Liao, M.-Y. Yang, Y.-P. Cai, S.-L. Li, Y.-Q. Lan, Angew. Chem. Int. Ed. 2022, 61, e202200003.
- 11S. Ma, T. Deng, Z. Li, Z. Zhang, J. Jia, Q. Li, G. Wu, H. Xia, S.-W. Yang, X. Liu, Angew. Chem. Int. Ed. 2022, 61, e202208919.
- 12X. Zhan, Y. Jin, C. Qu, H. Liu, R. Jiang, Q. Zhi, D. Qi, K. Wang, B. Han, H. Pan, J. Jiang, Adv. Funct. Mater. 2024, 61, e202200003.
- 13T. He, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202303086.
- 14S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548–568.
- 15Q. Guan, L.-L. Zhou, Y.-B. Dong, Chem. Soc. Rev. 2022, 51, 6307–6416.
- 16H. L. Nguyen, A. Alzamly, ACS Catal. 2021, 11, 9809–9824.
- 17K. Geng, T. He, R. Liu, S. Dalapati, K.-T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, 120, 8814–8933.
- 18A. Cao, R. Li, X. Xu, W. Huang, Y. He, J. Li, M. Sun, X. Chen, L. Kang, Appl. Catal. B 2022, 309, 121293.
- 19C. J. Zeman, S. Kim, F. Zhang, K. S. Schanze, J. Am. Chem. Soc. 2020, 142, 2204–2207.
- 20Y. Xu, J. Zheng, J. O. Lindner, X. Wen, N. Jiang, Z. Hu, L. Liu, F. Huang, F. Würthner, Z. Xie, Angew. Chem. Int. Ed. 2020, 59, 10363–10367.
- 21I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725–728.
- 22I. Heckelmann, Z. Lu, J. C. A. Prentice, F. Auras, T. K. Ronson, R. H. Friend, J. R. Nitschke, S. Feldmann, Angew. Chem. Int. Ed. 2023, 62, e202216729.
- 23Y. Guo, B. Liu, J. Zhang, G. Wang, C. Pan, H. Zhao, C. Wang, F. Yu, Y. Dong, Y. Zhu, Appl. Catal. B 2024, 340, 123217.
- 24H. Li, P. Shao, S. Chen, G. Li, X. Feng, X. Chen, H. Zhang, J. Lin, Y. Jiang, J. Am. Chem. Soc. 2020, 142, 3712–3717.
- 25R. Luo, W. Xu, M. Chen, X. Liu, Y. Fang, H. Ji, ChemSusChem 2020, 13, 6509–6522.
- 26G. Kumar, M. Singh, R. Goswami, S. Neogi, ACS Appl. Mater. Interfaces 2020, 12, 48642–48653.
- 27T.-C. Zhuo, Y. Song, G.-L. Zhuang, L.-P. Chang, S. Yao, W. Zhang, Y. Wang, P. Wang, W. Lin, T.-B. Lu, Z.-M. Zhang, J. Am. Chem. Soc. 2021, 143, 6114–6122.
- 28S. Saini, D. Chakraborty, E. S. Erakulan, R. Thapa, R. Bal, A. Bhaumik, S. L. Jain, ACS Appl. Mater. Interfaces 2022, 14, 50913–50922.
- 29Y. Chen, S.-N. Sun, X.-H. Chen, M.-L. Chen, J.-M. Lin, Q. Niu, S.-L. Li, J. Liu, Y.-Q. Lan, Adv. Mater. 2025, 37, 2413638.
- 30J.-C. Wang, R. Pan, W.-T. Yang, Z. Chen, J.-Q. Du, J.-L. Kan, Y.-B. Dong, Chem. Commun. 2025, 61, 1168–1171.
- 31E. Jin, Z. Lan, Q. Jiang, K. Geng, G. Li, X. Wang, D. Jiang, Chem 2019, 5, 1632–1647.
- 32P. Dong, X. Xu, R. Luo, S. Yuan, J. Zhou, J. Lei, J. Am. Chem. Soc. 2023, 145, 15473–15481.
- 33H. Xu, S. Xia, C. Li, Y. Li, W. Xing, Y. Jiang, X. Chen, Angew. Chem. Int. Ed. 2024, 63, e202405476.
- 34X. Yuan, N. Wu, Z.-Y. Guo, H.-B. Zhan, Microporous Mesoporous Mater. 2023, 355, 112573.
- 35C. Liu, D.-L. Ma, P.-J. Tian, C. Jia, Q.-Y. Qi, G.-F. Jiang, X. Zhao, J. Mater. Chem. A 2024, 12, 16063–16069.
- 36Z. Chen, K. Wang, X. Hu, P. Shi, Z. Guo, H. Zhan, ACS Appl. Mater. Interfaces 2021, 13, 1145–1151.
- 37P. Li, F. Ge, Y. Yang, T. Wang, X. Zhang, K. Zhang, J. Shen, Angew. Chem. Int. Ed. 2024, 63, e202319885.
- 38H.-S. Xu, Y. Luo, P. Z. See, X. Li, Z. Chen, Y. Zhou, X. Zhao, K. Leng, I.-H. Park, R. Li, C. Liu, F. Chen, S. Xi, J. Sun, K. P. Loh, Angew. Chem. Int. Ed. 2020, 132, 11624–11629.
- 39S. Yang, Z. He, X. Li, B. Mei, Y. Huang, Q. Xu, Z. Jiang, Angew. Chem. Int. Ed. 2025, 64, e202418347.
- 40H. L. Nguyen, C. Gropp, O. M. Yaghi, J. Am. Chem. Soc. 2020, 142, 2771–2776.
- 41Y. Liu, W.-K. Han, W. Chi, J.-X. Fu, Y. Mao, X. Yan, J.-X. Shao, Y. Jiang, Z.-G. Gu, Appl. Catal. B 2023, 338, 123074.
- 42L. Zou, Z.-A. Chen, D.-H. Si, S.-L. Yang, W.-Q. Gao, K. Wang, Y.-B. Huang, R. Cao, Angew. Chem. Int. Ed. 2023, 62, e202309820.
- 43H. Yang, J. Wang, R. Zhao, L. Hou, Small 2024, 20, 2400688.
- 44B. Zhang, H. Li, Y. Kang, K. Yang, H. Liu, Y. Zhao, S. Qiao, Adv. Funct. Mater. 2025, 35, 2416958.
- 45L. Li, Q. Yun, C. Zhu, G. Sheng, J. Guo, B. Chen, M. Zhao, Z. Zhang, Z. Lai, X. Zhang, Y. Peng, Y. Zhu, H. Zhang, J. Am. Chem. Soc. 2022, 144, 6475–6482.
- 46Y. Chang, C. Lin, H. Wang, X. Wu, L. Zou, J. Shi, Q. Xiao, Q. Xu, X. Li, W. Luo, Angew. Chem. Int. Ed. 2025, 64, e202414075.
- 47F. Auras, L. Ascherl, V. Bon, S. M. Vornholt, S. Krause, M. Döblinger, D. Bessinger, S. Reuter, K. W. Chapman, S. Kaskel, R. H. Friend, T. Bein, Nat. Chem. 2024, 16, 1373–1380.
- 48M. Li, B. Han, L. Gong, Y. Jin, M. Wang, X. Ding, D. Qi, J. Jiang, Chin. Chem. Lett. 2024, 110590, https://doi.org/10.1016/j.cclet.2024.110590.
- 49Z. Gao, S. Lv, Y. Wang, Z. Xu, Y. Zong, Y. Tao, Y. Zhao, X. Liu, S. Yu, M. Luo, N. Khaorapapong, R. Zhang, Y. Yamauchi, Adv. Sci. 2024, 11, 2406530.
- 50J. Ding, X. Guan, J. Lv, X. Chen, Y. Zhang, H. Li, D. Zhang, S. Qiu, H.-L. Jiang, Q. Fang, J. Am. Chem. Soc. 2023, 145, 3248–3254.
- 51K. Lin, J. Wang, S. Qiao, Z. Guo, ACS Sustainable Chem. Eng. 2024, 12, 6719–6727.
- 52Y.-N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng, J. Jiang, H.-L. Jiang, J. Am. Chem. Soc. 2020, 142, 16723–16731.
- 53L. Luo, Y. Liu, Z. Wu, J. Liu, X. Cao, J. Lin, R. Ling, X. Luo, C. Wang, Chem. Eng. J. 2022, 448, 137626.
- 54Z. Chen, K. Wang, Y. Tang, L. Li, X. Hu, M. Han, Z. Guo, H. Zhan, B. Chen, Angew. Chem. Int. Ed. 2023, 62, e202213268.
- 55L.-Y. Ai, Q. Wang, X.-W. Chen, G.-F. Jiang, Aggregate 2024, 5, e582.
- 56A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 2002, 124, 13547–13553.
- 57P. Hosseini, A. Rodríguez-Camargo, Y. Jiang, S. Zhang, C. Scheu, L. Yao, B. V. Lotsch, K. Tschulik, Adv. Sci. 2025, 12, 2413555.
- 58X.-X. Wang, C.-R. Zhang, R.-X. Bi, Z.-H. Peng, A.-M. Song, R. Zhang, H.-X. He, J.-X. Qi, J.-W. Gong, C.-P. Niu, R.-P. Liang, J.-D. Qiu, Adv. Funct. Mater. 2024, 2421623, https://doi.org/10.1002/adfm.202421623.
- 59L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 2022, 144, 17097–17109.
- 60L.-Y. Ai, Q. Wang, X.-W. Chen, G.-F. Jiang, Chem. Eng. J. 2023, 475, 146106.
- 61J.-R. Wang, K. Song, T.-X. Luan, K. Cheng, Q. Wang, Y. Wang, W. W. Yu, P.-Z. Li, Y. Zhao, Nat. Commun. 2024, 15, 1267.
- 62T.-X. Luan, J.-R. Wang, K. Li, H. Li, F. Nan, W. W. Yu, P.-Z. Li, Small 2023, 19, 2303324.
- 63X. Huang, Y. Chen, X. Xie, T. Song, Small 2025, 21, 2408817.
- 64Z. Luo, S. Zhu, H. Xue, W. Yang, F. Zhang, F. Xu, W. Lin, H. Wang, X. Chen, Angew. Chem. Int. Ed. 2025, 64, e202420217.
- 65H.-L. Zhang, Z. Lin, P. Kidkhunthod, J. Guo, Angew. Chem, Int. Ed. 2023, 62, e202217527.
- 66H. He, R. Shen, Y. Yan, D. Chen, Z. Liu, L. Hao, X. Zhang, P. Zhang, X. Li, Chem. Sci. 2024, 15, 20002–20012.
- 67L.-J. Chen, G.-N. Chen, C.-T. Gong, Y.-F. Zhang, Z.-H. Xing, J.-H. Li, G.-D. Xu, G. Li, Y.-W. Peng, Nat. Commun. 2024, 15, 10501.
- 68A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168–3210.
10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 69J. Zhu, Eur. J. Org. Chem. 2003, 2003, 1133–1144.
- 70A. Dömling, W. Wang, K. Wang, Chem. Rev. 2012, 112, 3083–3135.
- 71U. K. Sharma, N. Sharma, D. D. Vachhani, E. V. Van Der Eycken, Chem. Soc. Rev. 2015, 44, 1836–1860.
- 72W. Zhang, Z. Deng, J. Deng, C.-T. Au, Y. Liao, H. Yang, Q. Liu, J. Mater. Chem. A 2022, 10, 22419–22427.
- 73C. Vila, M. Rueping, Green Chem. 2013, 15, 2056–2059.
- 74S. Gan, Y. Zeng, J. Liu, J. Nie, C. Lu, C. Ma, F. Wang, G. Yang, Catal. Sci. Technol. 2022, 12, 1202–1210.
- 75Y. Tao, Y. Hou, H. Yang, Z. Gong, J. Yu, H. Zhong, Q. Fu, J. Wang, F. Zhu, G. Ouyang, Proc. Natl. Acad. Sci. USA 2024, 121, e2401175121.
- 76M.-Y. Yang, S.-B. Zhang, M. Zhang, Z.-H. Li, Y.-F. Liu, X. Liao, M. Lu, S.-L. Li, Y.-Q. Lan, J. Am. Chem. Soc. 2024, 146, 3396–3404.
- 77D. Liu, C. Zhu, L.-L. Ma, G. Yuan, Mater. Lett. 2024, 364, 136395.
- 78Q.-J. Wu, D.-H. Si, S. Ye, Y.-L. Dong, R. Cao, Y.-B. Huang, J. Am. Chem. Soc. 2023, 145, 19856–19865.
- 79D. Liu, H. Ma, C. Zhu, F. Qiu, W. Yu, L.-L. Ma, X.-W. Wei, Y.-F. Han, G. Yuan, J. Am.Chem. Soc. 2024, 146, 2275–2285.
- 80G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 81H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.
- 82S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104–154123.
- 83Q. Xu, L. Wang, X. Sheng, Y. Yang, C. Zhang, L. Duan, H. Guo, Appl. Catal. B 2023, 338, 123058.
- 84S. Mohata, R. Das, K. Koner, M. Riyaz, K. Das, S. Chakraborty, Y. Ogaeri, Y. Nishiyama, S. C Peter, R. Banerjee, J. Am. Chem. Soc. 2023, 145, 23802–23813.
- 85Y. Zhang, X. Guan, Z. Meng, H.-L. Jiang, J. Am. Chem. Soc. 2025, 147, 3776–3785.
- 86P. Fu, C. Chen, C. Wu, B. Meng, Q. Yue, T. Chen, W. Yin, X. Chi, X. Yu, R. Li, Y. Wang, Y. Zhang, W. Luo, X. Liu, Y. Han, J. Wang, S. Xi, Y. Zhou, Angew. Chem. Int. Ed. 2025, 64, e202415202.
- 87Y.-K. Zhang, L. Zhao, A. O. Terent'ev, L.-N. He, J. Mater. Chem. A 2025, 13, 1407–1419.