Programming One-Dimensional Open-Channel Superlattices with Edge-Bonding of Meta-DNA
Dr. Qin Xu
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorLe Li
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorDr. Xiaoliang Chen
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorChangmao Huang
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorDr. Jiangbo Liu
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorWenhe Ma
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorMeiyuan Qi
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Xiaolei Zuo
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorProf. Xiaoguo Liu
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Mingqiang Li
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorProf. Xiangyuan Ouyang
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorProf. Chunhai Fan
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Guangbao Yao
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDr. Qin Xu
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorLe Li
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorDr. Xiaoliang Chen
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorChangmao Huang
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorDr. Jiangbo Liu
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorWenhe Ma
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorMeiyuan Qi
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Xiaolei Zuo
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
Search for more papers by this authorProf. Xiaoguo Liu
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Mingqiang Li
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorProf. Xiangyuan Ouyang
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorProf. Chunhai Fan
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Guangbao Yao
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
The physicochemical properties of one-dimensional (1D) porous nanomaterials are fundamentally influenced by their channel geometrical and topological characteristics. However, synthesis of geometrically and topologically diversified 1D porous crystals spanning the mesoporous-to-macroporous range remains a significant challenge. Here, we present a universal strategy for constructing 1D open-channel superlattices through edge-to-edge assembly (edge-bonding) of DNA-sparsely modified meta-DNA (M-DNA). By programming the rigidity and length of sparsely distributed DNA bonds on M-DNA surfaces, we achieved long-range ordered assembly of triangular M-DNA 1D single-channel superlattice (3.7 ± 1.2 µm) with a macroporous structure. The generality of this approach was further demonstrated by assembling hexagonal M-DNA into 1D multi-channel superlattice (3.6 ± 1.0 µm) with a mesoporous structure, thereby reducing the pore size from 140 to 29 nm and the porosity from ∼94.2 to ∼87.5%. Furthermore, an ultrathin gold layer grown on the triangular M-DNA superlattice exhibited a ∼3.3-fold enhancement in electrocatalytic activity compared to non-assembled triangular M-DNA, attributed to the increased surface area and narrower bandgap. This work broadens the design framework for porous crystals assembled via DNA nanotechnology and highlights their potential applications in catalysis, energy conversion, and beyond.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202504223-sup-0001-SuppMat.docx56.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 2015, 350, 1508–1513.
- 2P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, A. V. Zayats, Nat. Nanotechnol. 2018, 13, 159–164.
- 3C. Yang, J. Le, Y. Kuang, Z. Meng, H. Dai, Y. Zhou, H. Qiu, J. Am. Chem. Soc. 2024, 146, 26198–26206.
- 4V. Andrei, I. Roh, P. Yang, Sci. Adv. 2023, 9, eade9044.
- 5J. Shen, Y. Cai, C. Zhang, W. Wei, C. Chen, L. Liu, K. Yang, Y. Ma, Y. Wang, C.-C. Tseng, J.-H. Fu, X. Dong, J. Li, X.-X. Zhang, L.-J. Li, J. Jiang, I. Pinnau, V. Tung, Y. Han, Nat. Mater. 2022, 21, 1183–1190.
- 6H. Hou, L. Wang, F. Gao, G. Wei, B. Tang, W. Yang, T. Wu, J. Am. Chem. Soc. 2014, 136, 16716–16719.
- 7S. Zhang, H. Liu, N. Tang, J. Ge, J. Yu, B. Ding, Nat. Commun. 2019, 10, 1458.
- 8W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 14385–14388.
- 9P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Nat. Chem. 2016, 8, 718–724.
- 10L. Xie, S. Zhou, J. Liu, B. Qiu, T. Liu, Q. Liang, X. Zheng, B. Li, J. Zeng, M. Yan, Y. He, X. Zhang, H. Zeng, D. Ma, P. Chen, K. Liang, L. Jiang, Y. Wang, D. Zhao, B. Kong, J. Am. Chem. Soc. 2021, 143, 6922–6932.
- 11Z. Zhou, T. Liu, A. U. Khan, G. Liu, Sci. Adv. 2019, 5, eaau6852.
- 12H. Tian, J. Qin, D. Hou, Q. Li, C. Li, Z. S. Wu, Y. Mai, Angew. Chem. Int. Ed. 2019, 58, 10173–10178.
- 13H.-Y. Hsueh, C.-T. Yao, R.-M. Ho, Chem. Soc. Rev. 2015, 44, 1974–2018.
- 14N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068.
- 15D. Han, S. Pal, Y. Yang, S. Jiang, J. Nangreave, Y. Liu, H. Yan, Science 2013, 339, 1412–1415.
- 16Y. Ke, L. L. Ong, W. M. Shih, P. Yin, Science 2012, 338, 1177–1183.
- 17F. Hong, F. Zhang, Y. Liu, H. Yan, Chem. Rev. 2017, 117, 12584–12640.
- 18P. Wang, T. A. Meyer, V. Pan, P. K. Dutta, Y. Ke, Chem 2017, 2, 359–382.
- 19E. Benson, A. Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen, B. Högberg, Nature 2015, 523, 441–444.
- 20F. Zhang, S. Jiang, S. Wu, Y. Li, C. Mao, Y. Liu, H. Yan, Nat. Nanotechnol. 2015, 10, 779–784.
- 21C. M. Wintersinger, D. Minev, A. Ershova, H. M. Sasaki, G. Gowri, J. F. Berengut, F. E. Corea-Dilbert, P. Yin, W. M. Shih, Nat. Nanotechnol. 2023, 18, 281–289.
- 22G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan, H. Yan, Nat.Chem 2020, 12, 1067–1075.
- 23R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, C. A. Mirkin, Science 2011, 334, 204–208.
- 24S. Jiang, F. Zhang, H. Yan, Nat. Mater. 2020, 19, 694–700.
- 25W. Zhou, Y. Lim, H. Lin, S. Lee, Y. Li, Z. Huang, J. S. Du, B. Lee, S. Wang, A. Sánchez-Iglesias, M. Grzelczak, L. M. Liz-Marzán, S. C. Glotzer, C. A. Mirkin, Nat. Mater. 2024, 23, 424–428.
- 26H. Lin, S. Lee, L. Sun, M. Spellings, M. Engel, S. C. Glotzer, C. A. Mirkin, Science 2017, 355, 931–935.
- 27E. Auyeung, T. I. N. G. Li, A. J. Senesi, A. L. Schmucker, B. C. Pals, M. O. de la Cruz, C. A. Mirkin, Nature 2014, 505, 73–77.
- 28S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, C. A. Mirkin, Nature 2008, 451, 553–556.
- 29D. J. Lewis, L. Z. Zornberg, D. J. D. Carter, R. J. Macfarlane, Nat. Mater. 2020, 19, 719–724.
- 30Y. Wang, Y. Wang, X. Zheng, É. Ducrot, J. S. Yodh, M. Weck, D. J. Pine, Nat. Commun. 2015, 6, 7253.
- 31C. R. Laramy, M. N. O'Brien, C. A. Mirkin, Nat. Rev. Mater. 2019, 4, 201–224.
- 32W. B. Rogers, W. M. Shih, V. N. Manoharan, Nat. Rev. Mater. 2016, 1, 16008.
- 33W. B. Rogers, J. C. Crocker, Proc. Natl. Acad. Sci. USA 2011, 108, 15687–15692.
- 34P. L. Biancaniello, A. J. Kim, J. C. Crocker, Phys. Rev. Lett. 2005, 94, 058302.
- 35M. E. Leunissen, R. Dreyfus, R. Sha, N. C. Seeman, P. M. Chaikin, J. Am. Chem. Soc. 2010, 132, 1903–1913.
- 36M.-P. Valignat, O. Theodoly, J. C. Crocker, W. B. Russel, P. M. Chaikin, Proc. Natl. Acad. Sci. USA 2005, 102, 4225–4229.
- 37A. J. Kim, R. Scarlett, P. L. Biancaniello, T. Sinno, J. C. Crocker, Nat. Mater. 2009, 8, 52–55.
- 38A. J. Senesi, D. J. Eichelsdoerfer, K. A. Brown, B. Lee, E. Auyeung, C. H. J. Choi, R. J. Macfarlane, K. L. Young, C. A. Mirkin, Adv. Mater. 2014, 26, 7235–7240.
- 39M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, C. A. Mirkin, Nat. Mater. 2010, 9, 913–917.
- 40X. Fan, A. Walther, Chem.Soc. Rev. 2022, 51, 4023–4074.
- 41Qiulong, W., Fangyu, X., Shuangshuang, T., Lei, H., Esther, H., Adv. Mater. 2017.
- 42L. Li, Y. Ding, G. Xie, S. Luo, X. Liu, J. Shi, Y. Wan, C. Fan, X. Ouyang, Angew. Chem. Int. Ed. 2024, 136.
- 43S. L. Young, J. E. Kellon, J. E. Hutchison, J. Am. Chem. Soc. 2016, 138, 13975–13984.
- 44Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer, P. Yang, C. J. Chang, J. Am. Chem. Soc. 2016, 138, 8120–8125.
- 45S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 2016, 6, 8069–8097.
- 46S. Bolar, S. Shit, N. C. Murmu, P. Samanta, T. Kuila, ACS Appl. Mater. Interfaces 2021, 13, 765–780.
- 47C.-Y. Li, E. A. Hemmig, J. Kong, J. Yoo, S. Hernández-Ainsa, U. F. Keyser, A. Aksimentiev, ACS Nano 2015, 9, 1420–1433.
- 48B. Liu, A. J. Bard, C. Z. Li, H. B. Kraatz, Phys. Chem. B 2005, 109, 51935198.
- 49S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, W. M. Shih, Nucleic Acids Res. 2009, 37, 5001–5006.
- 50E. Stahl, T. G. Martin, F. Praetorius, H. Dietz, Angew. Chem. Int. Ed. 2014, 53, 12735–12740.
- 51F. C. Anson, Anal. Chem. 1964, 36, 932–934.
- 52T. E. Ouldridge, A. A. Louis, J. P. K. Doye, J. Chem. Phys. 2011, 134.
- 53B. E. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, J. P. Doye, J. Chem. Phys. 2015, 142, 234901.
- 54A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A. A. Louis, J. P. K. Doye, C. Micheletti, L. Rovigatti, J. Comput. Chem. 2019, 40, 2586–2595.
- 55J. Russo, P. Tartaglia, F. Sciortino, J. Chem. Phys. 2009, 131.
- 56P. Sulc, Coarse-grained modelling of nucleic acids, Ph.D. Thesis, Oxford University, UK, 2014.
- 57J. P. K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C. K. Wong, A. A. Louis, J. S. Schreck, M. C. Engel, M. Matthies, E. Benson, E. Poppleton, B. E. K. Snodin, Methods Mol. Biol. 2023, 2639, 93–112.
- 58E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang, P. Šulc, Nucleic Acids Res. 2020, 48, e72.
- 59J. Bohlin, M. Matthies, E. Poppleton, J. Procyk, A. Mallya, H. Yan, P. Šulc, Nat. Protoc. 2022, 17, 1762–1788.
- 60K. J. Breslauer, R. Frank, H. Blöcker, L. A. Marky, Proc. Natl. Acad. Sci. USA 1986, 83, 3746–3750.
- 61P. W. K. Rothemund, Nature 2006, 440, 297–302.