Site-Specific Spin State Modulation in Spinel Oxides for Enhanced Nonradical Oxidation
Jingdan Shi
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYaxin Cheng
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Ting Wang
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYanhua Peng
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Search for more papers by this authorXinlong Lin
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Bing Tang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorProf. Mingbao Feng
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Zechao Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Yuanmiao Sun
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P.R. China
Search for more papers by this authorProf. Xin Yu
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhichuan J. Xu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJingdan Shi
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYaxin Cheng
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Ting Wang
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYanhua Peng
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Search for more papers by this authorXinlong Lin
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Bing Tang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorProf. Mingbao Feng
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Zechao Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Yuanmiao Sun
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P.R. China
Search for more papers by this authorProf. Xin Yu
College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhichuan J. Xu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This work highlights a strategy that leverages site-specific spin state modulation in spinel oxides, which optimizes site-specific functionalities and enhances the overall nonradical oxidation reaction kinetics by 22-fold. XAS, magnetism characterization combined with theoretical calculation unveil the establishment of a QSEI that facilitates spin channel for charge transfer and the RDS desorption with a lower-ICOHP in fine-tuned spin states.
Abstract
Spinel oxides hold tremendous potential for driving advanced oxidation processes, yet the underlying mechanism for maximizing their activity remains unclear. In this study, we leverage tetrahedral and octahedral site interactions in MnxCo3-xO4 to modulate the spin states, specifically spin alignment and spin moment, thereby enhancing periodate (PI) activation and catalytic performance in contaminant degradation. Through combined experimental and density functional theory (DFT) analyses, we elucidate the role of spin alignment at synergetic tetrahedral and octahedral sites in facilitating quantum spin exchange interactions (QSEI) with an efficient electronic spin channel for charge transfer. Meanwhile, the engineered high spin configuration in CoMn2O4 raises the d-band center, favoring stable PI* surface complex formation and accelerating the rate-determining desorption of IO3− with a lower-ICOHP value during the catalytic degradation of ciprofloxacin. As a result, the fine-tuned spin state of CoMn2O4 leads to enhanced overall reaction kinetics, with a 2.5-fold increase compared to MnCo2O4 and up to 22-fold increase compared to the octahedrally-active only catalysts. Such a site-specific modulation has been found applicable to other spinel oxides, enlightening fine-tuned electronic structure for maximizing catalytic performance.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202504189-sup-0001-SuppMat.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X.-w. Ao, J. Eloranta, C.-H. Huang, D. Santoro, W.-j. Sun, Z.-d. Lu, C. Li, Water Res. 2021, 188, 116479.
- 2M. Luo, H. Zhang, Y. Shi, J. Zhao, C. Feng, J. Yin, Y. Liu, P. Zhou, Z. Xiong, B. Lai, Water Res. 2023, 240, 120128.
- 3R. Zhang, P. Sun, T. H. Boyer, L. Zhao, C.-H. Huang, Environ. Sci. Technol. 2015, 49, 3056–3066.
- 4K. Zhang, S. Zhang, C. Ye, R. Ou, H. Zeng, X. Yu, M. Feng, Chem. Eng. J. 2023, 451, 138642.
- 5A. D. Bokare, W. Choi, Environ. Sci. Technol. 2015, 49, 14392–14400.
- 6H. Sun, F. He, W. Choi, Environ. Sci. Technol. 2020, 54, 6427–6437.
- 7Y.-C. Lee, M.-J. Chen, C.-P. Huang, J. Kuo, S.-L. Lo, Ultrason. Sonochem. 2016, 31, 499–505.
- 8Y. Choi, H. I. Yoon, C. Lee, L. Vetráková, D. Heger, K. Kim, J. Kim, Environ. Sci. Technol. 2018, 52, 5378–5385.
- 9J. Li, T. Yang, G. Zeng, L. An, J. Jiang, Z. Ao, J. Ma, Environ. Sci. Technol. 2023, 57, 18607–18616.
- 10X. Zhang, M. Kamali, T. Uleners, J. Symus, S. Zhang, Z. Liu, M. E. V. Costa, L. Appels, D. Cabooter, R. Dewil, Chem. Eng. J. 2022, 449, 137680.
- 11L. Xiang, E. Almatrafi, H. Yang, H. Ye, F. Qin, H. Yi, Y. Fu, X. Huo, W. Xia, H. Li, M. Yan, C. Zhou, G. Zeng, X. Tan, Chem. Eng. J. 2023, 455, 140560.
- 12L. He, C. Yang, J. Ding, M.-Y. Lu, C.-X. Chen, G.-Y. Wang, J.-Q. Jiang, L. Ding, G.-S. Liu, N.-Q. Ren, S.-S. Yang, Appl. Catal. B: Environ. 2022, 303, 120880.
- 13J. Du, G. Xiao, Y. Xi, X. Zhu, F. Su, S. H. Kim, Water Res. 2020, 169, 115278.
- 14Y. Wu, X. Tan, J. Zhao, J. Ma, J. Hazard. Mater. 2023, 454, 131506.
- 15K. Xiao, B.-H. Xiao, J.-X. Li, S. Cao, Z.-Q. Liu, Proc. Natl. Acad. Sci 2024, 121, e2409201121.
- 16Y. Peng, H. Tang, B. Yao, X. Gao, X. Yang, Y. Zhou, Chem. Eng. J. 2021, 414, 128800.
- 17Z. Y. Guo, C. X. Li, M. Gao, X. Han, Y. J. Zhang, W. J. Zhang, W. W. Li, Angew. Chem. Int. Ed. 2021, 60, 274–280.
- 18J. Deng, Y. Shao, N. Gao, C. Tan, S. Zhou, X. Hu, J. Hazard. Mater. 2013, 262, 836–844.
- 19J. Li, M. Xu, G. Yao, B. Lai, Chem. Eng. J. 2018, 348, 1012–1024.
- 20X. Dong, B. Ren, Z. Sun, C. Li, X. Zhang, M. Kong, S. Zheng, D. D. Dionysiou, Appl. Catal. B: Environ. 2019, 253, 206–217.
- 21L. Zhang, J. Chen, T. Zheng, Y. Xu, T. Liu, W. Yin, Y. Zhang, X. Zhou, Water Res. 2023, 229, 119462.
- 22W. Xu, X. Zheng, Z. Shangguan, J. Qu, W. Zhang, Chem. Eng. J. 2023, 464, 142562.
- 23A. Grimaud, C. E. Carlton, M. Risch, W. T. Hong, K. J. May, Y. Shao-Horn, J. Phys. Chem. C. 2013, 117, 25926–25932.
- 24M. Risch, F. Ringleb, M. Kohlhoff, P. Bogdanoff, P. Chernev, I. Zaharieva, H. Dau, Energy Environ. Sci. 2015, 8, 661–674.
- 25J. Wu, X. Wang, W. Zheng, Y. Sun, Y. Xie, K. Ma, Z. Zhang, Q. Liao, Z. Tian, Z. Kang, Y. Zhang, J. Am. Chem. Soc. 2022, 144, 19163–19172.
- 26M. Zhang, M. de Respinis, H. Frei, Nat. Chem. 2014, 6, 362–367.
- 27Y. Wu, X. Wang, T. She, T. Li, Y. Wang, Z. Xu, X. Jin, H. Song, S. Yang, S. Li, S. Yan, H. He, L. Zhang, Z. Zou, Small. 2023, 20, 2306464.
- 28Y. Chen, J. K. Seo, Y. Sun, T. A. Wynn, M. Olguin, M. Zhang, J. Wang, S. Xi, Y. Du, K. Yuan, W. Chen, A. C. Fisher, M. Wang, Z. Feng, J. Gracia, L. Huang, S. Du, H.-J. Gao, Y. S. Meng, Z. J. Xu, Nat. Commun. 2022, 13, 5510.
- 29P. Cai, J. Zhao, X. Zhang, T. Zhang, G. Yin, S. Chen, C.-L. Dong, Y.-C. Huang, Y. Sun, D. Yang, B. Xing, Appl. Catal. B: Environ. 2022, 306, 121091.
- 30H. Li, P. Shi, L. Wang, T. Yan, T. Guo, X. Xia, C. Chen, J. Mao, D. Sun, L. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202216286.
- 31T. Li, L. Zhang, L. Zhang, J. Ke, T. Du, L. Zhang, Y. Cao, C. Yan, T. Qian, Adv. Funct. Mater. 2024, 34, 2309886.
- 32L. Tian, Z.-J. Tang, L.-Y. Hao, T. Dai, J.-P. Zou, Z.-Q. Liu, Angew. Chem. Int. Ed. 2024, 63, e202401434.
- 33Y. Zhang, Q. Wu, J. Z. Y. Seow, Y. Jia, X. Ren, Z. J. Xu, Chem. Soc. Rev. 2024, 53, 8123–8136.
- 34T. Wu, X. Ren, Y. Sun, S. Sun, G. Xian, G. G. Scherer, A. C. Fisher, D. Mandler, J. W. Ager, A. Grimaud, J. Wang, C. Shen, H. Yang, J. Gracia, H.-J. Gao, Z. J. Xu, Nat. Commun. 2021, 12, 3634.
- 35J. Ge, R. R. Chen, X. Ren, J. Liu, S. J. H. Ong, Z. J. Xu, Adv. Mater. 2021, 33, 2101091.
- 36R. R. Chen, Y. Sun, S. J. H. Ong, S. Xi, Y. Du, C. Liu, O. Lev, Z. J. Xu, Adv. Mater. 2020, 32, 1907976.
- 37W. Zhou, M. Chen, D. Zhao, C. Zhu, N. Wang, W. Lei, Y. Guo, L. Li, Adv. Funct. Mater. 2024, 34, 2402114.
- 38Y. Liu, X. Wu, H. Qu, G. Lu, Y. Chen, B. Lu, Y. Song, G. Zhou, H. M. Cheng, Adv. Mater. 2024, 2411652.
- 39S. Yang, X. Guo, X. Li, T. Wu, L. Zou, Z. He, Q. Xu, J. Zheng, L. Chen, Q. Wang, Z. J. Xu, Angew. Chem. Int. Ed. 2024, 63, e202317957.
- 40H.-J. Zhang, Z.-Q. Chen, X.-T. Ye, K. Xiao, Z.-Q. Liu, Angew. Chem. Int. Ed. 2025, 64, e202421027.
- 41J. Song, N. Hou, X. Liu, M. Antonietti, P. Zhang, R. Ding, L. Song, Y. Wang, Y. Mu, Adv. Mater. 2023, 35, 2209552.
- 42Z. Wu, Z. Xiong, B. Huang, G. Yao, S. Zhan, B. Lai, Nat. Commun. 2024, 15, 7775.
- 43J. Miao, J. Song, J. Lang, Y. Zhu, J. Dai, Y. Wei, M. Long, Z. Shao, B. Zhou, P. J. J. Alvarez, L. Zhang, Environ. Sci. Technol. 2023, 57, 4266–4275.
- 44R. Wang, L. Zhang, J. Shan, Y. Yang, J. F. Lee, T. Y. Chen, J. Mao, Y. Zhao, L. Yang, Z. Hu, T. Ling, Adv. Sci. 2022, 9, 2203917.
- 45R. Wang, J. Zhong, D. Li, J. Meng, W. Huang, X. Ma, W. Guo, F. Tian, C. Li, Chem. Eng. J. 2024, 488, 150894.
- 46B. Li, Y. Liu, K. Hu, Q. Dai, C. Chen, X. Duan, S. Wang, Y. Wang, Adv. Funct. Mater. 2024, 34, 2401397.
- 47V. Gnezdilov, V. Fomin, A. V. Yeremenko, K.-Y. Choi, Y. Pashkevich, P. Lemmens, S. Shiryaev, G. Bychkov, S. Barilo, Low Temp. Phys 2006, 32, 162–168.
- 48Z. Y. Guo, R. B. Sun, Z. X. Huang, X. Han, H. R. Wang, C. Chen, Y. Q. Liu, X. S. Zheng, W. J. Zhang, X. Hong, W. W. Li, Proc. Natl. Acad. Sci 2023, 120, e2220608120.
- 49Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu, T. Liu, Adv. Energy Mater. 2022, 12, 2103820.
- 50Y. Ren, X. Lei, H. Wang, J. Xiao, Z. Qu, ACS Catal. 2023, 13, 8293–8306.
- 51C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen, X. Wang, Adv. Funct. Mater. 2020, 30, 2000556.
- 52L. Pan, M. Ai, C. Huang, L. Yin, X. Liu, R. Zhang, S. Wang, Z. Jiang, X. Zhang, J.-J. Zou, W. Mi, Nat. Commun. 2020, 11, 418.
- 53A. Ohtomo, D. A. Muller, J. L. Grazul, H. Y. Hwang, Nature 2002, 419, 378–380.
- 54J. Wang, J. Zhou, Y. Hu, T. Regier, Energy Environ. Sci. 2013, 6, 926.
- 55W. H. Lee, M. H. Han, Y.-J. Ko, B. K. Min, K. H. Chae, H.-S. Oh, Nat. Commun. 2022, 13, 605.
- 56J. Ding, Z. Wei, F. Li, J. Zhang, Q. Zhang, J. Zhou, W. Wang, Y. Liu, Z. Zhang, X. Su, R. Yang, W. Liu, C. Su, H. B. Yang, Y. Huang, Y. Zhai, B. Liu, Nat. Commun. 2023, 14, 6550.
- 57Y. Liu, X. Rong, R. Bai, R. Xiao, C. Xu, C. Zhang, J. Xu, W. Yin, Q. Zhang, X. Liang, Y. Lu, J. Zhao, L. Chen, Y.-S. Hu, Nat. Energy. 2023, 8, 1088–1096.
- 58Y. Zhang, A. Hu, D. Xia, S. Hwang, S. Sainio, D. Nordlund, F. M. Michel, R. B. Moore, L. Li, F. Lin, Nat. Nanotechnol. 2023, 18, 790–797.
- 59L. Karvonen, M. Valkeapää, R.-S. Liu, J.-M. Chen, H. Yamauchi, M. Karppinen, Chem. Mater. 2010, 22, 70–76.
- 60J. Huang, C. N. Borca, T. Huthwelker, N. S. Yüzbasi, D. Baster, M. El Kazzi, C. W. Schneider, T. J. Schmidt, E. Fabbri, Nat. Commun. 2024, 15, 3067.
- 61J. Suntivich, W. T. Hong, Y.-L. Lee, J. M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J. W. Freeland, Y. Shao-Horn, J. Phys. Chem. C. 2014, 118, 1856–1863.
- 62J. Peng, P. Zhou, H. Zhou, B. Huang, M. Sun, C.-S. He, H. Zhang, Z. Ao, W. Liu, B. Lai, Environ. Sci. Technol. 2023, 57, 10804–10815.
- 63K. Zhang, C. Ye, Y. Lou, X. Yu, M. Feng, J. Hazard. Mater. 2023, 442, 130058.
- 64C. Ling, S. Wu, J. Han, T. Dong, C. Zhu, X. Li, L. Xu, Y. Zhang, M. Zhou, Y. Pan, Water Res. 2022, 220, 118676.
- 65Y. Yu, H. Dong, L. Lian, X. Guan, Chem. Eng. J. 2022, 443, 136387.
- 66L. Chen, J. Duan, P. Du, W. Sun, B. Lai, W. Liu, Water Res. 2022, 221, 118747.
- 67Z. Luo, Y. Yan, R. Spinney, D. D. Dionysiou, F. A. Villamena, R. Xiao, D. Vione, Water Res. 2024, 261, 122023.
- 68Y. M. Sun, S. N. Sun, H. T. Yang, S. B. Xi, J. Gracia, Z. C. J. Xu, Adv. Mater. 2020, 32, 2003297.
- 69R. Sharpe, T. Lim, Y. Jiao, J. W. Niemantsverdriet, J. Gracia, ChemCatChem 2016, 8, 3762–3768.
- 70E. Dagotto, Science 2005, 309, 257–262.
- 71L. Zhang, A. Cheruvathur, C. Biz, M. Fianchini, J. Gracia, Phys. Chem. Chem. Phys. 2019, 21, 2977–2983.
- 72J. B. Goodenough, Rep. Prog. Phys. 2004, 67, 1915–1993.
- 73J. B. Goodenough, J. Phys. Chem. Solids. 1958, 6, 287–297.
- 74G. Gao, E. R. Waclawik, A. Du, J. Catal. 2017, 352, 579–585.
- 75G.-P. Gao, S.-H. Wei, X. Gu, X.-M. Duan, Phys. Chem. Chem. Phys. 2013, 15, 12846.
- 76J.-C. Liu, X.-L. Ma, Y. Li, Y.-G. Wang, H. Xiao, J. Li, Nat. Commun. 2018, 9, 1610.