Vacancy and Dopant Co-Constructed Active Microregion in Ru–MoO3−x/Mo2AlB2 for Enhanced Acidic Hydrogen Evolution
Yuquan Yang
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDawei Pang
College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorChenjing Wang
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZhongheng Fu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorNaiyan Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorJiajia Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorHongjing Wu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorCorresponding Author
Binbin Jia
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhonglu Guo
Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaoyu Fan
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jinlong Zheng
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuquan Yang
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDawei Pang
College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorChenjing Wang
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZhongheng Fu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorNaiyan Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorJiajia Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorHongjing Wu
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Search for more papers by this authorCorresponding Author
Binbin Jia
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhonglu Guo
Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaoyu Fan
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jinlong Zheng
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 P.R. China
Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A novel Ru-doped low crystalline-crystalline MoO3−x/Mo2AlB2 hybrid material was designed. The region containing Ru atom and/or O vacancy is innovatively defined as the active microregion. The Ru─O─Mo bonds with shorter bond lengths provide satisfactory preconditions for the electronic structure modulation of O atoms. The ∆GH* of electron-rich O atoms is close to 0, which can effectively enhance the catalytic activity of HER.
Abstract
Accurate identification of catalytic active regions is crucial for the rational design and construction of hydrogen evolution catalysts as well as the targeted regulation of their catalytic performance. Herein, the low crystalline-crystalline hybrid MoO3−x/Mo2AlB2 with unsaturated coordination and rich defects is taken as the precursor. Through the Joule heating reaction, the Ru-doped MoO3−x/Mo2AlB2 catalyst is successfully constructed. Building on the traditional view that individual atoms or vacancies act as active sites, this article innovatively proposes the theory that vacancies and doped atoms synergistically construct active microregions, and multiple electron-rich O atoms within the active microregions jointly serve as hydrogen evolution active sites. Based on X-ray absorption fine structure analysis and first-principles calculations, there is a strong electron transfer among Ru atoms, Mo atoms, and O atoms, leading to extensive O atoms with optimized electronic structure in the active microregions. These O atoms exhibit an H* adsorption free energy close to zero, thereby enhancing the catalytic activity for hydrogen evolution. This work provides a brand-new strategy for the design and preparation of electrocatalytic materials and the systematic regulation of the local electronic structure of catalysts.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202504084-sup-0001-SuppMat.docx23.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Chen, M. Aliasgar, F. B. Zamudio, T. Zhang, Y. Zhao, X. Lian, L. Wen, H. Yang, W. Sun, S. M. Kozlov, W. Chen, L. Wang, Nat. Commun. 2023, 14, 1711.
- 2B. Pang, X. Liu, T. Liu, T. Chen, X. Shen, W. Zhang, S. Wang, T. Liu, D. Liu, T. Ding, Z. Liao, Y. Li, C. Liang, T. Yao, Energy Environ. Sci. 2022, 15, 102–108.
- 3B. Zeng, X. Liu, L. Wan, C. Xia, L. Cao, Y. Hu, B. Dong, Angew. Chem. Int. Ed. 2024, 63, e202400582.
- 4C.-A. Zhou, K. Ma, Z. Zhuang, M. Ran, G. Shu, C. Wang, L. Song, L. Zheng, H. Yue, D. Wang, J. Am. Chem. Soc. 2024, 146, 21453–21465.
- 5X. Chen, X.-T. Wang, J.-B. Le, S.-M. Li, X. Wang, Y.-J. Zhang, P. Radjenovic, Y. Zhao, Y.-H. Wang, X.-M. Lin, J.-C. Dong, J.-F. Li, Nat. Commun. 2023, 14, 5289.
- 6Y. Zhu, M. Klingenhof, C. Gao, T. Koketsu, G. Weiser, Y. Pi, S. Liu, L. Sui, J. Hou, J. Li, H. Jiang, L. Xu, W.-H. Huang, C.-W. Pao, M. Yang, Z. Hu, P. Strasser, J. Ma, Nat. Commun. 2024, 15, 1447.
- 7L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen, K. Wang, M. Li, F. Lin, H. Luo, Y. Gu, L. Li, S. Zhang, F. Lv, G. Lu, M. Luo, S. Guo, J. Am. Chem. Soc. 2023, 145, 21432–21441.
- 8W. Chen, M. Yu, S. Liu, C. Zhang, S. Jiang, G. Duan, Adv. Funct. Mater. 2024, 34, 2313307.
- 9L. Wang, M. Ma, C. Zhang, H. H. Chang, Y. Zhang, L. Li, H. Y. Chen, S. Peng, Angew. Chem. Int. Ed. 2024, 63, e202317220.
- 10J. Xu, H. Jin, T. Lu, J. Li, Y. Liu, K. Davey, Y. Zheng, S. Qiao, Sci. Adv. 2023, 9, eadh1718.
- 11Y. Zhou, W. Hao, X. Zhao, J. Zhou, H. Yu, B. Lin, Z. Liu, S. J. Pennycook, S. Li, H. Fan, Adv. Mater. 2022, 34, 2100537.
- 12I. Ro, J. Qi, S. Lee, M. Xu, X. Yan, Z. Xie, G. Zakem, A. Morales, J. G. Chen, X. Pan, D. G. Vlachos, S. Caratzoulas, P. Christopher, Nature 2022, 609, 287–292.
- 13M. Sun, H. Wang, H. Wu, Y. Yang, J. Liu, R. Cong, Z. Liang, Z. Huang, J. Zheng, Dalton Trans. 2024, 53, 3559–3572.
- 14K. Wu, C. Wang, X. Lang, J. Cheng, H. Wu, C. Lyu, W.-M. Lau, Z. Liang, X. Zhu, J. Zheng, J. Colloid Interface Sci. 2024, 654, 1040–1053.
- 15Z. Guo, J. Zhou, Z. Sun, J. Mater. Chem. A 2017, 5, 23530–23535.
- 16M. Ade, H. Hillebrecht, Inorg. Chem. 2015, 54, 6122–6135.
- 17P. Helmer, J. Halim, J. Zhou, R. Mohan, B. Wickman, J. Björk, J. Rosen, Adv. Funct. Mater. 2022, 32, 2109060.
- 18Z. Wang, J. Su, D. Feng, Y. Yao, Y. Yan, Y. Cui, G. M. Rignanese, H. Hosono, J. Wang, Small 2024, 20, 2407100.
- 19Q. Shen, Y. Shi, Y. He, J. Wang, Adv. Sci. 2024, 11, 2308589.
- 20L. T. Alameda, P. Moradifar, Z. P. Metzger, N. Alem, R. E. Schaak, J. Am. Chem. Soc. 2018, 140, 8833–8840.
- 21Z. Zhao, J. Sun, X. Li, S. Qin, C. Li, Z. Zhang, Z. Li, X. Meng, Nat. Commun. 2024, 15, 7475.
- 22G. He, M. Yan, H. Gong, H. Fei, S. Wang, Int. J. Extrem. Manuf. 2022, 4, 032003.
- 23A. R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong, X. Tan, H. Lei, H. A. Tahini, A. Henson, B. Subhash, N. M. Bedford, B. K. Miller, P. B. O'Mara, T. M. Benedetti, D. L. Huber, W. Zhang, S. C. Smith, J. J. Gooding, W. Schuhmann, R. D. Tilley, Nat. Catal. 2022, 5, 231–237.
- 24D. Chen, T. Gao, Z. Wei, M. Wang, Y. Ma, D. Xiao, C. Cao, C. Lee, P. Liu, D. Wang, S. Zhao, H. Wang, L. Han, Adv. Mater. 2024, 36, 2410537.
- 25M. Kim, S. Kim, J. Park, S. Lee, I. Jang, S. Kim, C. Y. Lee, O. J. Kwon, H. C. Ham, J. T. Hupp, N. Jung, S. J. Yoo, D. Whang, Adv. Funct. Mater. 2023, 33, 2300673.
- 26Y. Liu, L. Xing, Y. Liu, D. Lian, M. Chen, W. Zhang, K. Wu, H. Zhu, Z. Sun, W. Chen, P. Wu, D. Wang, Y. Ji, Appl. Catal. B Environ. Energy 2024, 353, 124088.
- 27B. Zhang, Y. Chang, Y. Wu, Z. Fan, P. Zhai, C. Wang, J. Gao, L. Sun, J. Hou, Adv. Energy Mater. 2022, 12, 2200321.
- 28T. Ma, P. Wang, H.-J. Niu, Z. Che, G. Li, W. Zhou, Carbon 2024, 218, 118758.
- 29Z. Li, F. Meng, X. Yang, Y. Qi, Y. Qin, B. Zhang, ACS Catal. 2024, 14, 5016–5026.
- 30G. Li, H. Jang, S. Liu, Z. Li, M. G. Kim, Q. Qin, X. Liu, J. Cho, Nat. Commun. 2022, 13, 1270.
- 31C. Lyu, Y. Li, J. Cheng, Y. Yang, K. Wu, J. Wu, H. Wang, W. M. Lau, Z. Tian, N. Wang, J. Zheng, Small 2023, 19, 2302055.
- 32C. Lyu, J. Cheng, H. Wang, Y. Yang, K. Wu, P. Song, W.-m. Lau, J. Zheng, X. Zhu, H. Y. Yang, Adv. Compos. Hybrid Mater. 2023, 6, 175.
- 33Y. Zhu, J. Wang, T. Koketsu, M. Kroschel, J.-M. Chen, S.-Y. Hsu, G. Henkelman, Z. Hu, P. Strasser, J. Ma, Nat. Commun. 2022, 13, 7754.
- 34X. Yue, D. Zheng, M. Gao, K. Wang, Z. Zhang, W. Dai, X. Fu, ACS Catal. 2023, 13, 15841–15850.
- 35N. T. T. Thao, K. Kim, J. H. Ryu, B. S. An, A. K. Nayak, J. U. Jang, K. H. Na, W. Y. Choi, G. Ali, K. H. Chae, M. Akbar, K. Y. Chung, H. S. Cho, J. H. Park, B. H. Kim, H. Han, Adv. Sci. 2023, 10, 2207695.
- 36A. Zhou, D. Wang, Y. Li, Microstructures 2022, 2, 2022005.
- 37X. Zhao, Z. H. Levell, S. Yu, Y. Liu, Chem. Rev. 2022, 122, 10675–10709.
- 38J. Liu, S. Wang, Y. Tian, H. Guo, X. Chen, W. Lei, Y. Yu, C. Wang, Angew. Chem. Int. Ed. 2024, 64, e202414314.
- 39Z. Yang, J. Wang, C. Zhang, S. Wang, C. Xue, G. Tian, H. Su, C. Yan, Z. Yan, Y. Tian, MGE Advances 2024, 2, e22.
- 40Y. Li, W. Wang, M. Cheng, Y. Feng, X. Han, Q. Qian, Y. Zhu, G. Zhang, Adv. Mater. 2023, 35, 2206351.