Redox-Mediated Lithium Recovery From Spent LiFePO4 Stabilizes Ferricyanide Catholyte for Durable Zinc-Ferricyanide Flow Batteries
Junqiang Wang
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
Search for more papers by this authorZhexuan Liu
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorZhizhao Xu
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
Search for more papers by this authorCorresponding Author
Mei Ding
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBo Lu
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
Search for more papers by this authorCorresponding Author
Chuankun Jia
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Guangmin Zhou
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorJunqiang Wang
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
Search for more papers by this authorZhexuan Liu
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorZhizhao Xu
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
Search for more papers by this authorCorresponding Author
Mei Ding
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBo Lu
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
Search for more papers by this authorCorresponding Author
Chuankun Jia
Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410114 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Guangmin Zhou
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
Redox-mediated lithium recovery from spent LiFePO4 batteries enables high-solubility catholytes (up to 1.74 M [Fe(CN)6]4⁻) for ultra-stable alkaline zinc-ferricyanide flow batteries. This dual-function strategy integrates sustainable lithium recycling with advanced energy storage, achieving enhanced cycling stability and energy density.
Abstract
The scarcity of lithium resources and the increasing volume of spent lithium-ion batteries (LIBs) exacerbate the imbalance between lithium supply and demand. The development of efficient recovery strategies of valuable lithium ion (Li+) from spent LIBs and their subsequent utilization presents both significant opportunities and challenges. Here, we propose an innovative approach for Li+ recovery from spent lithium iron phosphate (LiFePO4) batteries (LFPs) and its subsequent utilization in alkaline zinc-ferricyanide flow batteries (AZFFBs). Utilizing a redox-mediated reaction, we achieve exceptional Li+ recovery efficiency from spent LFPs. Furthermore, the recovered Li+ in solution leads to the elevated ionic strength in the electrolyte, enhancing the concentration of [Fe(CN)6]4− to a remarkable level of 1.74 M. Utilizing the above catholyte, an AZFFB cell demonstrates the cycling life extending to 11 000 cycles with a degradation rate as low as 0.00019% per cycle and 0.09% per day at a current density of 120 mA cm−2. This study introduces a straightforward and efficient protocol that eliminates additional intermediate processes, achieving effective Li+ recovery from spent LFPs and subsequent utilization in flow batteries. The resulting AZFFB exhibits high energy density and long lifespan, positioning it as a promising candidate for large-scale energy storage solutions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202503109-sup-0001-SuppMat.docx3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature 2019, 575, 75–86.
- 2X.-G. Yang, T. Liu, C.-Y. Wang, Nat. Energy 2021, 6, 176–185.
- 3S. Deng, H. Wang, H. Liu, J. Liu, H. Yan, Nano-Micro Lett. 2014, 6, 209–226.
- 4J. Xiang, L. Yang, L. Yuan, K. Yuan, Y. Zhang, Y. Huang, J. Lin, F. Pan, Y. Huang, Joule 2019, 3, 2334–2363.
- 5G. Ji, J. Wang, Z. Liang, K. Jia, J. Ma, Z. Zhuang, G. Zhou, H.-M. Cheng, Nat. Commun. 2023, 14, 584.
- 6E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chem. Rev. 2020, 120, 7020–7063.
- 7J. Wang, J. Ma, K. Jia, Z. Liang, G. Ji, Y. Zhao, B. Li, G. Zhou, H.-M. Cheng, ACS Energy Lett. 2022, 7, 2816–2824.
- 8J. Yu, X. Wang, M. Zhou, Q. Wang, Energy Environ. Sci. 2019, 12, 2672–2677.
- 9M. Jiao, Q. Zhang, C. Ye, Z. Liu, X. Zhong, J. Wang, C. Li, L. Dai, G. Zhou, H.-M. Cheng, Proc. Natl. Acad. Sci. USA 2022, 119, e2202202119.
- 10M. Fan, X. Chang, Y.-J. Guo, W.-P. Chen, Y.-X. Yin, X. Yang, Q. Meng, L.-J. Wan, Y.-G. Guo, Energy Environ. Sci. 2021, 14, 1461–1468.
- 11J. Wang, Z. Liang, Y. Zhao, J. Sheng, J. Ma, K. Jia, B. Li, G. Zhou, H.-M. Cheng, Energy Storage Mater. 2022, 45, 768–776.
- 12P. Zhu, J. Hu, J. Hu, Y. Yang, W. Sun, Y. Yang, G. Zou, H. Hou, X. Ji, ACS Energy Lett. 2024, 9, 569–577.
- 13G. Wang, H. Zou, Z. Xu, A. Tang, F. Zhong, X. Zhu, C. Qin, M. Ding, W. You, C. Jia, Mater. Today Energy 2022, 28, 101061.
- 14M. Hu, A. P. Wang, J. Luo, Q. Wei, T. L. Liu, Adv. Energy Mater. 2023, 13, 2203762.
- 15C. Xie, Y. Duan, W. Xu, H. Zhang, X. Li, Angew. Chem. Int. Ed. 2017, 56, 14953–14957.
- 16M. Yang, Z. Xu, W. Xiang, H. Xu, M. Ding, L. Li, A. Tang, R. Gao, G. Zhou, C. Jia, Energy Storage Mater. 2022, 44, 433–440.
- 17Y. Cai, H. Zhang, T. Wang, S. Xi, Y. Song, S. Rong, J. Ma, Z. Han, C. T. J. Low, Q. Wang, Y. Ji, Joule 2025, 9, 101768.
- 18K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J. Aziz, M. P. Marshak, Science 2015, 349, 1529–1532.
- 19M. Wu, Y. Jing, A. A. Wong, E. M. Fell, S. Jin, Z. Tang, R. G. Gordon, M. J. Aziz, Chem 2020, 6, 1432–1442.
- 20D. G. Kwabi, K. Lin, Y. Ji, E. F. Kerr, M.-A. Goulet, D. De Porcellinis, D. P. Tabor, D. A. Pollack, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Joule 2018, 2, 1894–1906.
- 21C. Wang, Z. Yang, Y. Wang, P. Zhao, W. Yan, G. Zhu, L. Ma, B. Yu, L. Wang, G. Li, J. Liu, Z. Jin, ACS Energy Lett. 2018, 3, 2404–2409.
- 22Z. Yang, L. Tong, D. P. Tabor, E. S. Beh, M.-A. Goulet, D. De Porcellinis, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Adv. Energy Mater. 2018, 8, 1702056.
- 23S. Jin, Y. Jing, D. G. Kwabi, Y. Ji, L. Tong, D. De Porcellinis, M.-A. Goulet, D. A. Pollack, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2019, 4, 1342–1348.
- 24Y. Ji, M.-A. Goulet, D. A. Pollack, D. G. Kwabi, S. Jin, D. De Porcellinis, E. F. Kerr, R. G. Gordon, M. J. Aziz, Adv. Energy Mater. 2019, 9, 1900039.
- 25P. Sun, Y. Liu, Y. Li, M. A. Shehzad, Y. Liu, P. Zuo, Q. Chen, Z. Yang, T. Xu, Ind. Eng. Chem. Res. 2019, 58, 3994–3999.
- 26K. Lin, R. Gómez-Bombarelli, E. S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz, R. G. Gordon, Nat. Energy 2016, 1, 16102.
- 27A. Orita, M. G. Verde, M. Sakai, Y. S. Meng, Nat. Commun. 2016, 7, 13230.
- 28L. Tong, M.-A. Goulet, D. P. Tabor, E. F. Kerr, D. De Porcellinis, E. M. Fell, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2019, 4, 1880–1887.
- 29S. Jin, E. M. Fell, L. Vina-Lopez, Y. Jing, P. W. Michalak, R. G. Gordon, M. J. Aziz, Adv. Energy Mater. 2020, 10, 2000100.
- 30C. Wang, X. Li, B. Yu, Y. Wang, Z. Yang, H. Wang, H. Lin, J. Ma, G. Li, Z. Jin, ACS Energy Lett. 2020, 5, 411–417.
- 31C. Mirle, V. Medabalmi, K. Ramanujam, Catal. Today 2021, 370, 173–180.
- 32J. Xu, S. Pang, X. Wang, P. Wang, Y. Ji, Joule 2021, 5, 2437–2449.
- 33T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy Mater. 2016, 6, 1501449.
- 34Y. Long, Z. Xu, G. Wang, H. Xu, M. Yang, M. Ding, D. Yuan, C. Yan, Q. Sun, M. Liu, C. Jia, iScience 2021, 24, 103157.
- 35A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, Q. Liu, J. Appl. Electrochem. 2011, 41, 1137–1164.
- 36B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Nature 2014, 505, 195–198.
- 37Y. K. Zeng, T. S. Zhao, X. L. Zhou, L. Wei, H. R. Jiang, J. Power Sources 2016, 330, 55–60.
- 38B. Hu, C. DeBruler, Z. Rhodes, T. L. Liu, J. Am. Chem. Soc. 2017, 139, 1207–1214.
- 39J. Luo, B. Hu, C. Debruler, Y. Bi, Y. Zhao, B. Yuan, M. Hu, W. Wu, T. L. Liu, Joule 2019, 3, 149–163.
- 40Z. Li, G. Weng, Q. Zou, G. Cong, Y.-C. Lu, Nano Energy 2016, 30, 283–292.
- 41L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Adv. Energy Mater. 2011, 1, 394–400.
- 42M. Ding, H. Fu, X. Lou, M. He, B. Chen, Z. Han, S. Chu, B. Lu, G. Zhou, C. Jia, ACS Nano 2023, 17, 16252–16263.
- 43Z. Chen, T. Li, C. Xie, X. Li, ACS Energy Lett. 2024, 9, 3426–3432.
- 44P. Tippayamalee, C. Pattanathummasid, R. Chanajaree, P. Pienpinijtham, S. Kheawhom, R. Cheacharoen, J. Energy Storage 2024, 86, 111295.
- 45D. Qiu, B. Li, C. Zhao, J. Dang, G. Chen, H. Qiu, H. Miao, Energy Storage Mater. 2023, 61, 102903.
- 46R. Khezri, S. R. Motlagh, M. Etesami, P. Pakawanit, S. Olaru, A. Somwangthanaroj, S. Kheawhom, Appl. Energy 2024, 376, 124239.
- 47C. Xu, X. Hu, Y. Yang, Z. Jian, W. Chen, L. Yang, C. Yang, H. Liu, J. Zhao, H. Cao, Y.-S. Hu, Energy Storage Mater. 2023, 60, 102819.
- 48P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang, M. Li, Y. Chen, K. An, Y. S. Meng, P. Liu, Y. Li, J. S. Spangenberger, L. Gaines, J. Lu, Z. Chen, Joule 2020, 4, 2609–2626.
- 49X. Li, F. Zhou, S. Gao, J. Zhao, D. Wang, H. Yin, Waste Manage. 2022, 153, 347–354.
- 50J. Zhang, W. Hu, J. Zou, X. Wang, P. Li, D. Peng, Y. Li, R. Zhao, D. He, ACS Sustainable Chem. Eng. 2022, 10, 13424–13434.
- 51X. Qiu, B. Zhang, Y. Xu, J. Hu, W. Deng, G. Zou, H. Hou, Y. Yang, W. Sun, Y. Hu, X. Cao, X. Ji, Green Chem. 2022, 24, 2506–2515.
- 52Z. Li, L. He, Y. Zhu, C. Yang, ACS Sustainable Chem. Eng. 2020, 8, 15915–15926.
- 53X.-H. Yue, F.-S. Zhang, Chem. Eng. J. 2022, 450, 138388.
- 54J. Zhang, J. Hu, Y. Liu, Q. Jing, C. Yang, Y. Chen, C. Wang, ACS Sustainable Chem. Eng. 2019, 7, 5626–5631.
- 55H. Mahandra, A. Ghahreman, Resour. Conserv. Recy. 2021, 175, 105883.
- 56C. Qi, S. Wang, X. Zhu, T. Zhang, Y. Gou, Z. Xie, Y. Jin, Y. Wang, L. Song, M. Zhang, J. Alloy Compd. 2022, 924, 166612.
- 57B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435–447.
- 58J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157–1174.
- 59C. I. Bayly, P. Cieplak, W. D. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97, 10269–10280.
- 60H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684–3690.
- 61U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577–8593.
- 62L. G. Astrakas, C. Gousias, M. Tzaphlidou, J. Appl. Phys. 2012, 111, 074702.
- 63B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, Mol. Simul. 1988, 1, 173–185.
- 64W. F. Van Gunsteren, H. J. C. Berendsen, Mol. Simul. 1988, 1, 173-185.
- 65K. Gong, X. Ma, K. M. Conforti, K. J. Kuttler, J. B. Grunewald, K. L. Yeager, M. Z. Bazant, S. Gu, Y. Yan, Energy Environ. Sci. 2015, 8, 2941–2945
- 66C. Minke, T. Turek, J. Power Sources 2018, 376, 66–81