A Novel Tandem Reaction System for High-Concentration Acetic Acid Production from Methane and Oxygen
Haonan Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorYang Li
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorShuai Wang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorShuxu Zhu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorChaoqun Gu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorPengye Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorHongjie Qin
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorRunze Guo
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorWenbin Wang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorTianshi Xu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorGaiyan Jiao
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorJianrong Zeng
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 P.R. China
Search for more papers by this authorYanyan Xi
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorQi Hua
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorCorresponding Author
Mingbo Wu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266061 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenting Wu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHaonan Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorYang Li
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorShuai Wang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorShuxu Zhu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorChaoqun Gu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorPengye Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorHongjie Qin
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorRunze Guo
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorWenbin Wang
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorTianshi Xu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorGaiyan Jiao
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorJianrong Zeng
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 P.R. China
Search for more papers by this authorYanyan Xi
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorQi Hua
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
Search for more papers by this authorCorresponding Author
Mingbo Wu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266061 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenting Wu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy China University of Petroleum (East China), Qingdao, 266580 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This study developed a plasma-thermo-catalytic tandem system, optimizing plasma processes in a self-designed reactor to achieve 68.0% methane conversion and 5.2 mol L−1 methanol concentration. A hydrophobic ReRh/ZSM-5-S catalyst minimized byproduct effects, enabling 52.0% acetic acid selectivity and 1.3 mol L−1 concentration, three orders of magnitude higher than traditional methods, meeting industrial criteria and advancing efficient methane utilization.
Abstract
Directly converting methane into high-value products like CH3COOH poses significant challenges owing to the kinetic limitations of C─H activation and C─C coupling in traditional single-catalysis methods. This work systematically studied the compatibility and effectiveness of plasma and thermocatalytic tandem systems. By optimizing the plasma process in a self-designed dielectric barrier discharge (DBD) reactor, we enhanced methane conversion (68.0%), methanol concentration (5.2 mol L−1), and CO selectivity (56.9%), while preventing carbon deposition and CO2 formation. In subsequent thermocatalysis, we developed the stearic acid-modified ReRh/ZSM-5-S hydrophobic catalyst to avoid the separation of methanol and CO from the mixture and minimize the influence of by-products (e.g., H2O). This innovative approach achieved 52.0% CH3COOH selectivity and 1.3 mol L−1 concentrations, three orders of magnitude than traditional methods, meeting the preliminary industrial criteria. This study demonstrates the potential of tandem catalysis, offering valuable insights for the efficient utilization of methane and other challenging catalytic reactions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
anie202502822-sup-0001-SuppMat.docx13.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. McFarland, Science 2012, 338, 340–342.
- 2J. He, T. Xu, Z. Wang, Q. Zhang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 2012, 51, 2438–2442.
- 3M. Ravi, M. Ranocchiari, J. A. van Bokhoven, Angew. Chem. Int. Ed. 2017, 56, 16464–16483.
- 4V. C. C. Wang, S. Maji, P. P. Y. Chen, H. K. Lee, S. S. F. Yu, S. I. Chan, Chem. Rev. 2017, 117, 8574–8621.
- 5J. Liu, S. Zou, Y. Liu, J. Fan, Front. Chem. 2022, 10, 962033.
- 6T. Margossian, K. Larmier, S. M. Kim, F. Krumeich, C. Müller, C. Copéret, ACS Catal. 2017, 7, 6942–6948.
- 7S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Science 2016, 352, 969–974.
- 8J. Shan, M. Li, L. F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Nature 2017, 551, 605–608.
- 9B. Wu, H. Yin, X. Ma, R. Liu, B. He, H. Li, J. Zeng, Angew. Chem. Int. Ed. 2025, 64, e202412995.
- 10B. Wu, T. Lin, Z. Lu, X. Yu, M. Huang, R. Yang, C. Wang, C. Tian, J. Li, Y. Sun, L. Zhong, Chem 2022, 8, 1658–1672.
- 11P. Tomkins, M. Ranocchiari, J. A. van Bokhoven, Acc. Chem. Res. 2017, 50, 418–425.
- 12C. Qi, Y. Bi, Y. Wang, H. Yu, Y. Tian, P. Zong, Q. Zhang, H. Zhang, M. Wang, T. Xing, M. Wu, X. Tu, W. Wu, ACS Catal. 2024, 14, 7707–7716.
- 13F. Fang, X. Sun, Y. Liu, W. Huang, J. Am. Chem. Soc. 2024, 146, 8492–8499.
- 14C. Dong, M. Marinova, K. B. Tayeb, O. V. Safonova, Y. Zhou, D. Hu, S. Chernyak, M. Corda, J. Zaffran, A. Y. Khodakov, V. V. Ordomsky, J. Am. Chem. Soc. 2023, 145, 1185–1193.
- 15Q. Zhou, X. Tan, X. Wang, Q. Zhang, C. Qi, H. Yang, Z. He, T. Xing, M. Wang, M. Wu, W. Wu, ACS Catal. 2024, 14, 955–964.
- 16Y. Yuan, Y. Zhang, H. Li, M. Fei, H. Zhang, J. Santoro, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202305568.
- 17Z. Liu, E. Huang, I. Orozco, W. Liao, R. M. Palomino, N. Rui, T. Duchoň, S. Nemšák, D. C. Grinter, M. Mahapatra, P. Liu, J. A. Rodriguez, S. D. Senanayake, Science 2020, 368, 513–517.
- 18N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Science 2017, 358, 223–227.
- 19Y. Ren, C. Yu, L. Wang, X. Tan, Z. Wang, Q. Wei, Y. Zhang, J. Qiu, J. Am. Chem. Soc. 2022, 144, 10193–10200.
- 20Z. Wen, M. Wang, C. Liang, B. Fan, Y. Yan, J. Fan, N. Han, Y. Wang, Y. Li, J. Am. Chem. Soc. 2024, 146, 32575–32581.
- 21J. Kang, S. He, W. Zhou, Z. Shen, Y. Li, M. Chen, Q. Zhang, Y. Wang, Nat. Commun. 2020, 11, 827.
- 22Y. Chen, X.-Y. Li, Z. Chen, A. Ozden, J. E. Huang, P. Ou, J. Dong, J. Zhang, C. Tian, B.-H. Lee, X. Wang, S. Liu, Q. Qu, S. Wang, Y. Xu, R. K. Miao, Y. Zhao, Y. Liu, C. Qiu, J. Abed, H. Liu, H. Shin, D. Wang, Y. Li, D. Sinton, E. H. Sargent, Nat. Nanotechnol. 2024, 19, 311–318.
- 23Y. Yuan, Y. Zhang, H. Li, M. Fei, H. Zhang, J. Santoro, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202305568.
- 24S. Nie, L. Wu, X. Wang, J. Am. Chem. Soc. 2023, 145, 23681–23690.
- 25L. Wang, Y. Yi, C. Wu, H. Guo, X. Tu, Angew. Chem. Int. Ed. 2017, 56, 13679–13683.
- 26P. Chawdhury, Y. Wang, D. Ray, S. Mathieu, N. Wang, J. Harding, F. Bin, X. Tu, C. Subrahmanyam, Appl. Catal. B Environ. 2021, 284, 119735.
- 27Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C. Wang, X. Meng, H. Yang, C. Mesters, F.-S. Xiao, Science 2020, 367, 193–197.
- 28J. Qi, J. Finzel, H. Robatjazi, M. Xu, A. S. Hoffman, S. R. Bare, X. Pan, P. Christopher, J. Am. Chem. Soc. 2020, 142, 14178–14189.
- 29W. Xu, H. X. Liu, Y. Hu, Z. Wang, Z. Q. Huang, C. Huang, J. Lin, C. R. Chang, A. Wang, X. Wang, T. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202315343.
- 30H. Zhang, P. Han, D. Wu, C. Du, J. Zhao, K. H. L. Zhang, J. Lin, S. Wan, J. Huang, S. Wang, H. Xiong, Y. Wang, Nat. Commun. 2023, 14, 7705.
- 31T. Mizoroki, M. Nakayama, Bull. Chem. Soc. Jpn. 1968, 41, 1628–1633.
- 32S. Feng, X. Lin, X. Song, B. Mei, J. Mu, J. Li, Y. Liu, Z. Jiang, Y. Ding, ACS Catal. 2021, 11, 682–690.
- 33Y. Tang, Y. Li, V. Fung, D.-e. Jiang, W. Huang, S. Zhang, Y. Iwasawa, T. Sakata, L. Nguyen, X. Zhang, A. I. Frenkel, F. Tao, Nat. Commun. 2018, 9, 1231.
- 34G. Qi, T. E. Davies, A. Nasrallah, M. A. Sainna, A. G. R. Howe, R. J. Lewis, M. Quesne, C. R. A. Catlow, D. J. Willock, Q. He, D. Bethell, M. J. Howard, B. A. Murrer, B. Harrison, C. J. Kiely, X. Zhao, F. Deng, J. Xu, G. J. Hutchings, Nat. Catal. 2022, 5, 45–54.
- 35H. Li, M. Fei, J. L. Troiano, L. Ma, X. Yan, P. Tieu, Y. Yuan, Y. Zhang, T. Liu, X. Pan, G. W. Brudvig, D. Wang, J. Am. Chem. Soc. 2023, 145, 769–773.
- 36C. Shen, X. Y. Meng, R. Zou, K. Sun, Q. Wu, Y. X. Pan, C. J. Liu, Angew. Chem. Int. Ed. 2024, 63, e202402369.
- 37J. Zhang, Y. Pan, D. Feng, L. Cui, S. Zhao, J. Hu, S. Wang, Y. Qin, Adv. Mater. 2023, 35, 2300902.
- 38Y. Xu, X. Li, J. Gao, J. Wang, G. Ma, X. Wen, Y. Yang, Y. Li, M. Ding, Science 2021, 371, 610–613.
- 39M. Tan, S. Tian, T. Zhang, K. Wang, L. Xiao, J. Liang, Q. Ma, G. Yang, N. Tsubaki, Y. Tan, ACS Catal. 2021, 11, 4633–4643.
- 40A. Li, Y. Zhang, C. J. Heard, K. Gołąbek, X. Ju, J. Čejka, M. Mazur, Angew. Chem. Int. Ed. 2023, 62, e202213361.
- 41H. Wu, H. Wang, Y. Lv, Y. Wu, Y. Wang, Q. Luo, Y. Hui, L. Liu, M. Zhang, K. Hou, L. Li, J. Zeng, W. Dai, L. Wang, F.-S. Xiao, Angew. Chem. Int. Ed. 2024, 64, e202420306.
- 42A. Blankenship, M. Artsiusheuski, V. Sushkevich, J. A. van Bokhoven, Nat. Catal. 2023, 6, 748–762.
- 43W. Fang, X. Wang, S. Li, Y. Hao, Y. Yang, W. Zhao, R. Liu, D. Li, C. Li, X. Gao, L. Wang, H. Guo, Y. Yi, Green Chem. 2024, 26, 5150–5154.
- 44Q. Zhou, Y. Wan, X. Wang, Q. Zhang, H. Zhang, C. Qi, Z. Liu, H. Yang, T. Xing, M. Wang, M. Wu, W. Wu, Sep. Purif. Technol. 2025, 354, 129064.
- 45X. Li, C. Li, Y. Xu, Q. Liu, M. Bahri, L. Zhang, N. D. Browning, A. J. Cowan, J. Tang, Nat. Energy 2023, 8, 1013–1022.
- 46B. An, Q. h. Zhang, B. s. Zheng, M. Li, Y. y. Xi, X. Jin, S. Xue, Z. t. Li, M. b. Wu, W. t. Wu, Angew. Chem. Int. Ed. 2022, 134, e202204661.
- 47S. Nie, L. Wu, X. Wang, J. Am. Chem. Soc. 2023, 145, 23681–23690.
- 48C. Feng, S. Zuo, M. Hu, Y. Ren, L. Xia, J. Luo, C. Zou, S. Wang, Y. Zhu, M. Rueping, Y. Han, H. Zhang, Nat. Commun. 2024, 15, 9088.
- 49C. Han, Y. Cao, W. Yu, Z. Huang, F. Dong, L. Ye, S. Yu, Y. Zhou, J. Am. Chem. Soc. 2023, 145, 8609–8620.
- 50D. B. Clarke, D. K. Lee, M. J. Sandoval, A. T. Bell, J. Catal. 1994, 150, 81–93.
- 51L. J. Burcham, L. E. Briand, I. E. Wachs, Langmuir 2001, 17, 6164–6174.
- 52S. M. McClure, M. J. Lundwall, D. W. Goodman, Proc. Natl. Acad. Sci. USA 2011, 108, 931–936.
- 53Y. Zheng, Q. Wang, Q. Yang, S. Wang, M. J. Hülsey, S. Ding, S. Furukawa, M. Li, N. Yan, X. Ma, ACS Catal. 2023, 13, 7243–7255.
- 54M. G. Farpón, W. Henao, P. N. Plessow, E. Andrés, R. Arenal, C. Marini, G. Agostini, F. Studt, G. Prieto, Angew. Chem. Int. Ed. 2022, 135, e202214048.
10.1002/ange.202214048 Google Scholar
- 55I. Ro, J. Qi, S. Lee, M. Xu, X. Yan, Z. Xie, G. Zakem, A. Morales, J. G. Chen, X. Pan, D. G. Vlachos, S. Caratzoulas, P. Christopher, Nature 2022, 609, 287–292.
- 56X. Ye, C. Yang, X. Pan, J. Ma, Y. Zhang, Y. Ren, X. Liu, L. Li, Y. Huang, J. Am. Chem. Soc. 2020, 142, 19001–19005.
- 57J. Ding, H. Yang, X. Ma, S. Liu, W. Liu, Q. Mao, Y. Huang, J. Li, T. Zhang, B. Liu, Nat. Energy. 2023, 8, 1386–1394.