Boosting Initial Coulombic Efficiency in Li-Rich Mn-based Cathodes by Tuning Orbital Hybridization
Tao Zeng
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorZiqin Jiao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorXiaoyu Gao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorMaolin Yang
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorXiaohu Wang
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorWenguang Zhao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorWei Tang
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorMihai Chu
Department of Chemistry Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli, 7, Milan, 20131 Italy
Search for more papers by this authorZe He
Department of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge, CB3 0FS UK
Search for more papers by this authorJinqi Li
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorZhongyuan Huang
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorGuojie Chen
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorZiwei Chen
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Rui Wang
Department of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge, CB3 0FS UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiming Wang
Spallation Neutron Source Science Center, Dongguan, 523803 China
Search for more papers by this authorJunrong Zhang
Spallation Neutron Source Science Center, Dongguan, 523803 China
Search for more papers by this authorLunhua He
Spallation Neutron Source Science Center, Dongguan, 523803 China
Search for more papers by this authorCorresponding Author
Yuguang Pu
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yinguo Xiao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorTao Zeng
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorZiqin Jiao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorXiaoyu Gao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorMaolin Yang
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorXiaohu Wang
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorWenguang Zhao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorWei Tang
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorMihai Chu
Department of Chemistry Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli, 7, Milan, 20131 Italy
Search for more papers by this authorZe He
Department of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge, CB3 0FS UK
Search for more papers by this authorJinqi Li
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorZhongyuan Huang
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorGuojie Chen
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorZiwei Chen
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Rui Wang
Department of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge, CB3 0FS UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiming Wang
Spallation Neutron Source Science Center, Dongguan, 523803 China
Search for more papers by this authorJunrong Zhang
Spallation Neutron Source Science Center, Dongguan, 523803 China
Search for more papers by this authorLunhua He
Spallation Neutron Source Science Center, Dongguan, 523803 China
Search for more papers by this authorCorresponding Author
Yuguang Pu
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yinguo Xiao
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
In this study, we investigated the potential of Li-rich manganese-based oxides as promising cathode materials for next-generation lithium-ion batteries, highlighting the critical challenges posed by low initial coulombic efficiency and irreversible oxygen release. We introduce a novel treatment method using Glyoxal, which facilitates the integration of transition metal 3d and oxygen 2p orbital hybridization, aimed at optimizing the electrochemical performance of LRMO. Our results demonstrate a significant improvement in ICE, increasing from 85.3% to 102.5%. Additionally, the treated LRMO achieves a high specific capacity of 291.2 mAh g−1 at 0.1 C, surpassing untreated samples, and exhibits excellent cycling stability with retention rates of 90.1% after 150 cycles and 76.5% after 250 cycles at 0.5 C.
Abstract
Li-rich manganese-based oxides (LRMO) are promising cathode materials for next-generation lithium-ion batteries due to their high-capacity and low-cost merits. However, the low initial coulombic efficiency (ICE) and irreversible oxygen release of LRMO severely hinder their commercialization processes. Here, we employ glyoxal treatment to modulate the hybridization between transition metal (TM) 3d and oxygen (O) 2p orbitals in LRMO. This approach is found to reduce the Co/Mn t2g-O 2p hybridization in LRMO while simultaneously activating the Co2+/Co3+ redox below the Fermi level. Our findings demonstrate that tuning TM 3d-O 2p orbital hybridization can be a viable approach to improve the ICE of LMRO. Specifically, the ICE of LRMO can be elevated from 85.3% to 102.5%, and a high specific capacity of 291.2 mAh g−1 can be achieved at 0.1 C. Moreover, the treated LRMO cathodes exhibit significantly enhanced capacity retention.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202501777-sup-0001-SuppMat.docx30.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. M. Tarascon, M. Armand, Nature 2001, 414, 359–367.
- 2M. D. Radin, J. Vinckeviciute, R. Seshadri, A. Van der Ven, Nat. Energy 2019, 4, 639–646.
- 3S. Hu, Y. Li, Y. Chen, J. Peng, T. Zhou, W. K. Pang, C. Didier, V. K. Peterson, H. Wang, Q. Li, Z. Guo, Adv. Energy Mater. 2019, 9, 1901795.
- 4W. Jiang, C. Zhang, Y. Feng, B. Wei, L. Chen, R. Zhang, D. G. Ivey, P. Wang, W. Wei, Energy Storage Mater. 2020, 32, 37–45.
- 5R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 2020, 5, 777–785.
- 6W. Yin, A. Grimaud, G. Rousse, A. M. Abakumov, A. Senyshyn, L. Zhang, S. Trabesinger, A. Iadecola, D. Foix, D. Giaume, J.-M. Tarascon, Nat. Commun. 2020, 11, 1252.
- 7B. Li, D. Xia, Adv. Mater. 2017, 29, 1701054.
- 8P. Hou, Z. Sun, M. Dong, M. Gong, F. Li, X. Xu, Inorg. Chem. Front. 2023, 10, 5752–5761.
- 9L. de Biasi, B. Schwarz, T. Brezesinski, P. Hartmann, J. Janek, H. Ehrenberg, Adv. Mater. 2019, 31, 1900985.
- 10J. Dong, F. Wu, J. Zhao, Q. Shi, Y. Lu, N. Li, D. Cao, W. Li, J. Hao, X. Yang, L. Chen, Y. Su, Energy Storage Mater. 2023, 60, 102798.
- 11Y. Yang, X. Qu, X. Zhang, Y. Liu, J. Hu, J. Chen, M. Gao, H. Pan, Adv. Mater. 2020, 32, 1908285.
- 12X. Sun, C. Qin, B. Zhao, S. Jia, Z. Wang, T. Yang, X. Liu, L. Pan, L. Zheng, D. Luo, Y. Zhang, Energy Storage Mater. 2024, 70, 103559.
- 13Q. Wang, M. Yao, A. Zhu, Q. Wang, H. Wu, Y. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202309049.
- 14R. Wang, B. Weng, A. Mahadevegowda, I. Temprano, H. Wang, Z. He, C. Ducati, Y. Xiao, C. P. Grey, M. F. L. De Volder, Adv. Energy Mater. 2024, 14, 2401097.
- 15D. Mohanty, J. Li, D. P. Abraham, A. Huq, E. A. Payzant, D. L. Wood, III, C. Daniel, Chem. Mater. 2014, 26, 6272–6280.
- 16D. Eum, B. Kim, S. J. Kim, H. Park, J. Wu, S.-P. Cho, G. Yoon, M. H. Lee, S.-K. Jung, W. Yang, W. M. Seong, K. Ku, O. Tamwattana, S. K. Park, I. Hwang, K. Kang, Nat. Mater. 2020, 19, 419–427.
- 17W. E. Gent, K. Lim, Y. Liang, Q. Li, T. Barnes, S.-J. Ahn, K. H. Stone, M. McIntire, J. Hong, J. H. Song, Y. Li, A. Mehta, S. Ermon, T. Tyliszczak, D. Kilcoyne, D. Vine, J.-H. Park, S.-K. Doo, M. F. Toney, W. Yang, D. Prendergast, W. C. Chueh, Nat. Commun. 2017, 8, 2091.
- 18D. Luo, X. Ding, J. Fan, Z. Zhang, P. Liu, X. Yang, J. Guo, S. Sun, Z. Lin, Angew. Chem. Int. Ed. 2020, 59, 23061–23066.
- 19W. Guo, C. Zhang, Y. Zhang, L. Lin, W. He, Q. Xie, B. Sa, L. Wang, D.-L. Peng, Adv. Mater. 2021, 33, 2103173.
- 20C. Zhang, Y. Li, Y. Liu, X. Shen, Z. Hu, J.-M. Chen, H.-J. Lin, C.-T. Chen, Q. Kong, Y.-S. Hu, Y. Gao, S.-C. Haw, X. Wang, R. Yu, Z. Wang, L. Chen, Nano Energy 2024, 121, 109254.
- 21Q. Li, D. Ning, D. Wong, K. An, Y. Tang, D. Zhou, G. Schuck, Z. Chen, N. Zhang, X. Liu, Nat. Commun. 2022, 13, 1123.
- 22P. Yan, J. Zheng, Z.-K. Tang, A. Devaraj, G. Chen, K. Amine, J.-G. Zhang, L.-M. Liu, C. Wang, Nat. Nanotechnol. 2019, 14, 602–608.
- 23J. Guo, Y. Lai, X. Gao, S. Li, H. Zhang, C. Guan, L. Chen, Z. Yang, S. Li, Z. Zhang, Energy Storage Mater. 2024, 69, 103383.
- 24H.-x. Wei, Y.-m. Liu, Y.-h. Luo, Y.-d. Huang, L.-b. Tang, Z.-y. Wang, C. Yan, J. Mao, K.-h. Dai, Q. Wu, X.-h. Zhang, J.-c. Zheng, Adv. Funct. Mater. 2024, 34, 2307583.
- 25C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P. J. Reeves, S. J. Day, M. F. Groh, S. P. Emge, C. Ducati, B. Layla Mehdi, C. C. Tang, C. P. Grey, Nat. Mater. 2021, 20, 84–92.
- 26E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K.-W. Nam, H. L. Xin, C. Jaye, D. A. Fischer, K. Amine, X.-Q. Yang, Nat. Energy 2018, 3, 690–698.
- 27X. Hou, K. Ohta, Y. Kimura, Y. Tamenori, K. Tsuruta, K. Amezawa, T. Nakamura, Adv. Energy Mater. 2021, 11, 2101005.
- 28H. Yu, F. Chen, X. Li, H. Huang, Q. Zhang, S. Su, K. Wang, E. Mao, B. Mei, G. Mul, T. Ma, Y. Zhang, Nat. Commun. 2021, 12, 4594.
- 29J. Ma, M. Yuan, Z. Yang, Z. Ma, J. Zhang, Z. Li, P. a. Ma, Z. Cheng, J. Lin, J. Am. Chem. Soc. 2024, 146, 22348–22359.
- 30C. Zhang, G. Liu, X. Geng, K. Wu, M. Debliquy, Sens. Actuators, A 2020, 309, 112026.
- 31J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, J. Phys. Chem. B 2003, 107, 2887–2891.
- 32W.-S. Yoon, K. Y. Chung, J. McBreen, D. A. Fischer, X.-Q. Yang, J. Power Sources 2007, 174, 1015–1020.
- 33S. Hwang, S. M. Kim, S.-M. Bak, S. Y. Kim, B.-W. Cho, K. Y. Chung, J. Y. Lee, E. A. Stach, W. Chang, Chem. Mater. 2015, 27, 3927–3935.
- 34K. Huang, Principles of Electrochemical Conversion and Storage Devices, Wiley, Hoboken, USA 2025. p. 179. https://doi.org/10.1002/9783527851638.app2
10.1002/9783527851638.app2 Google Scholar
- 35E. M. Belgsir, H. Huser, C. Lamy, J. M. Leger, Studies in Surface Science and Catalysis, (Eds: M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, G. Pérot, R. Maurel, C. Montassier) 59, Elsevier, Amsterdam 1991, p. 463.
- 36G. Pierre, M. El Kordi, G. Cauquis, G. Mattioda, Y. Christidis, J. Electroanal. Chem. Interfacial Electrochem. 1985, 186, 167–177.
- 37M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. A. Hackney, J. Mater. Chem. 2007, 17, 3112.
- 38H. Xu, S. Deng, G. Chen, J. Mater. Chem. A 2014, 2, 15015–15021.
- 39S. Tan, L. Wang, L. Bian, J. Xu, W. Ren, P. Hu, A. Chang, J. Power Sources 2015, 277, 139–146.
- 40Y. Luo, X. Gao, M. Dong, T. Zeng, Z. Chen, M. Yang, Z. Huang, R. Wang, F. Pan, Y. Xiao, Chin. J. Struct. Chem. 2023, 42, 100032.
- 41D. Risskov Sørensen, A. Østergaard Drejer, M. Heere, A. Senyshyn, M. Frontzek, T. Hansen, C. Didier, V. K. Peterson, D. Bomholdt Ravnsbæk, M. Ry Vogel Jørgensen, Chemistry–Methods 2022, 2, e202200046.
- 42S.-i. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 2008, 7, 707–711.
- 43R. Saravanan, M. Prema Rani, Metal and Alloy Bonding–An Experimental Analysis: Charge Density in Metals and Alloys, (Eds: R. Saravanan, M. P. Rani), Springer London 2012, p. 31. https://doi.org/10.1007/978-1-4471-2204-3_2
10.1007/978-1-4471-2204-3_2 Google Scholar
- 44Q. Li, D. Ning, D. Zhou, K. An, D. Wong, L. Zhang, Z. Chen, G. Schuck, C. Schulz, Z. Xu, G. Schumacher, X. Liu, J. Mater. Chem. A 2020, 8, 7733–7745.
- 45Y. Zhang, Z. Chen, X. Shi, C. Meng, P. Das, S. Zheng, F. Pan, Z.-S. Wu, Adv. Energy Mater. 2023, 13, 2203045.
- 46X. Meng, Z. Guo, Y. Wang, H. Zhang, Y. Han, G. Zhao, Z. Liu, R. Tai, J. Synchrotron Radiat. 2019, 26, 543–550.
- 47X. Ding, D. Luo, J. Cui, H. Xie, Q. Ren, Z. Lin, Angew. Chem. Int. Ed. 2020, 59, 7778–7782.
- 48Z. Ye, B. Zhang, T. Chen, Z. Wu, D. Wang, W. Xiang, Y. Sun, Y. Liu, Y. Liu, J. Zhang, Y. Song, X. Guo, Angew. Chem. Int. Ed. 2021, 60, 23248–23255.
- 49G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère, J.-M. Tarascon, Nat. Commun. 2017, 8, 2219.
- 50L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, C. Delmas, D. Gonbeau, Chem. Mater. 2008, 20, 583–590.
- 51R. E. Ruther, A. F. Callender, H. Zhou, S. K. Martha, J. Nanda, J. Electrochem. Soc. 2015, 162, A98–A102.
- 52J. Yang, P. Li, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, D. Xia, Y. Cao, Adv. Energy Mater. 2020, 10, 1904264.
- 53P. Liu, W. He, Y. Cheng, Q. Wang, C. Zhang, Q. Xie, J. Han, Z. Qiao, H. Zheng, Q. Liu, L. Wang, B. Qu, Q. Luo, Z.-Z. Zhu, D.-L. Peng, J. Phys. Chem. Lett. 2020, 11, 2322–2329.
- 54W. Weppner, R. A. Huggins, J. Electrochem. Soc. 1977, 124, 1569–1578.
- 55X. Zhu, F. Meng, Q. Zhang, L. Xue, H. Zhu, S. Lan, Q. Liu, J. Zhao, Y. Zhuang, Q. Guo, B. Liu, L. Gu, X. Lu, Y. Ren, H. Xia, Nat. Sustain. 2021, 4, 392–401.
- 56K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, J. Mater. Chem. 2003, 13, 106–113.
- 57D. Zhang, T. Sun, K. Jiang, J. Zhou, J. Wang, H. Jiang, Mater. Today Chem. 2024, 38, 102080.
- 58S. Hy, W.-N. Su, J.-M. Chen, B.-J. Hwang, J. Phys. Chem. C 2012, 116, 25242–25247.
- 59S.-j. Lu, L.-b. Tang, H.-x. Wei, Y.-d. Huang, C. Yan, Z.-j. He, Y.-j. Li, J. Mao, K. Dai, J.-c. Zheng, Electrochem. Energy Rev. 2022, 5, 15.
- 60Z. Cui, A. Manthiram, Angew. Chem. Int. Ed. 2023, 62, e202307243.
- 61S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed. 2021, 60, 2208–2220.
- 62G. Li, Z. Ren, A. Li, R. Yu, W. Quan, C. Wang, T. Lin, D. Yi, Y. Liu, Q. Zhang, J. Wang, H. Yu, X. Sun, Nano Energy 2022, 98, 107169.
- 63S. Sun, C.-Z. Zhao, H. Yuan, Z.-H. Fu, X. Chen, Y. Lu, Y.-F. Li, J.-K. Hu, J. Dong, J.-Q. Huang, M. Ouyang, Q. Zhang, Sci. Adv. 2022, 8, eadd5189.
- 64H. Zhuo, H. Peng, B. Xiao, Z. Wang, X. Liu, Z. Li, G. Li, X. Bai, L. Wang, X. Huang, J. Wu, W. Quan, J. Wang, W. Zhuang, X. Sun, Adv. Energy Mater. 2023, 13, 2203354.
- 65G. Sun, F.-D. Yu, L.-F. Que, L. Deng, M.-J. Wang, Y.-S. Jiang, G. Shao, Z.-B. Wang, Nano Energy 2019, 66, 104102.
- 66W. Yang, Nat. Energy 2018, 3, 619–620.
- 67C. S. Schnohr, M. C. Ridgway, X-Ray Absorption Spectroscopy of Semiconductors (Eds: C. S. Schnohr, M. C. Ridgway), Springer Berlin Heidelberg, Berlin, Heidelberg 2015, p. 1. https://doi.org/10.1007/978-3-662-44362-0_1
10.1007/978-3-662-44362-0 Google Scholar
- 68Y. Zheng, H. Xie, J. Li, K. S. Hui, Z. Yu, H. Xu, D. A. Dinh, Z. Ye, C. Zha, K. N. Hui, Adv. Energy Mater. 2024, 14, 2400461.
- 69E. Zhao, Q. Li, F. Meng, J. Liu, J. Wang, L. He, Z. Jiang, Q. Zhang, X. Yu, L. Gu, W. Yang, H. Li, F. Wang, X. Huang, Angew. Chem. Int. Ed. 2019, 58, 4323–4327.
- 70B. Li, Z. Zhuo, L. Zhang, A. Iadecola, X. Gao, J. Guo, W. Yang, A. V. Morozov, A. M. Abakumov, J.-M. Tarascon, Nat. Mater. 2023, 22, 1370–1379.
- 71E. Castel, E. J. Berg, M. El Kazzi, P. Novák, C. Villevieille, Chem. Mater. 2014, 26, 5051–5057.
- 72J. Rodríguez-Carvajal, Phys. B 1993, 192, 55–69.
- 73Z. Jiang, J. Zhang, Z. Wu, B. Xia, C. Pu, J. Solid State Electrochem. 2024, 28, 3455–3465.
- 74M. Basham, J. Filik, M. T. Wharmby, P. C. Chang, B. El Kassaby, M. Gerring, J. Aishima, K. Levik, B. C. Pulford, I. Sikharulidze, D. Sneddon, M. Webber, S. S. Dhesi, F. Maccherozzi, O. Svensson, S. Brockhauser, G. Náray, A. W. Ashton, J. Synchrotron Radiat. 2015, 22, 853–858.
- 75X. Li, Q. Gu, B. Qiu, C. Yin, Z. Wei, W. Wen, Y. Zhang, Y. Zhou, H. Gao, H. Liang, Z. He, M. Zhang, Y. S. Meng, Z. Liu, Mater. Today 2022, 61, 91–103.
- 76Q. Jiang, M. Li, J. Li, J. Wang, G. Zhang, J. Wang, J. Zuo, G. Cao, R. Duan, Y. Hao, M. Li, Z. Yang, H. Yang, M. Bai, X. Song, Y. Xi, W. Li, X. Sun, X. Li, Adv. Mater. 2025, 37, 2417620.