Selective C2 Electroproduction via Back Bonding in Asymmetric Copper-Copper Motifs
Chenchen Fang
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Both authors contributed equally to this work.
Search for more papers by this authorLiming Dai
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Both authors contributed equally to this work.
Search for more papers by this authorXiaoyuan Zhang
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorZhuolun Li
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYaya Wang
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXuefeng Xu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorShuo San
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKai Liu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYuchen Fu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorJunjie Cui
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Jianfei Che
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Pan Xiong
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Yongsheng Fu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Prof. Jingwen Sun
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Junwu Zhu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected], [email protected]
Search for more papers by this authorChenchen Fang
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Both authors contributed equally to this work.
Search for more papers by this authorLiming Dai
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Both authors contributed equally to this work.
Search for more papers by this authorXiaoyuan Zhang
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorZhuolun Li
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYaya Wang
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXuefeng Xu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorShuo San
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKai Liu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYuchen Fu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorJunjie Cui
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Jianfei Che
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Pan Xiong
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Yongsheng Fu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Prof. Jingwen Sun
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Junwu Zhu
Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
Asymmetric CuF-CuN motifs were engineered through the in situ isostructural substitution method on F-Cu3N substrates. Unlike the isolated 3dz2-2pz σ bonding between CuN and the *C1 intermediate, CuF establishes an additional 3dxz-2pz π back bonding interaction. This synergy induces a charge-polarized 2*CHO adsorption configuration, concurrently enhancing coupling kinetics and C2 selectivity through dipole-dipole interactions.
Abstract
CO2 reduction reaction (CO2RR) is considered a highly attractive approach to reduce carbon emissions and yet encounters challenges in further converting *C1 intermediates to valuable two-carbon (C2) products. Although copper-based catalysts exhibit satisfactory adsorption energy for *C1 species, the symmetrical charge distribution at adjacent copper sites leads to a strong repulsive force between adsorbed *C1. Herein, asymmetric copper-copper (CuF-CuN) motifs with distinct adsorption behaviors have been constructed on the F-Cu3N substrate using the in situ isostructural substitution method. Compared to the high hybridization of CuN 3d and N 2p orbitals, implanted F not only reduces the hybridization strength but also endows the CuF with delocalized unpaired electrons. Accordingly, CuF, beyond forming an isolated 3dz2-2pz σ bond between Cu and the key *C1 intermediate (*CHO), offers additional 3dxz-2pz π back bonding to the *CHO. With dipole interactions in the asymmetric CuF-CuN motifs, the electrostatic repulsion between adjacent *CHO is diminished, efficiently promoting the C-C coupling in CO2RR. Therefore, the CuF-CuN motifs achieve an exceptional C2 selectivity of 81.5% with a partial current density of −325.9 mA cm−2 and a C2/C1 selectivity ratio of 10.47. This nuanced manipulation of atomic interactions illuminates a path to potentially groundbreaking alterations in material characteristics.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202501254-sup-0001-SuppMat.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wang, F. Yang, H. Xu, J. Jang, E. P. Delmo, X. Qiu, Z. Ying, P. Gao, S. Zhu, M. D. Gu, M. Shao, Angew. Chem. Int. Ed. 2024, 63, e202400952.
- 2X. She, L. Zhai, Y. Wang, P. Xiong, M. M.-J. Li, T.-S. Wu, M. C. Wong, X. Guo, Z. Xu, H. Li, H. Xu, Y. Zhu, S. C. E. Tsang, S. P. Lau, Nat. Energy 2024, 9, 81–91.
- 3C. Long, X. L. Liu, K. W. Wan, Y. H. Jiang, P. F. An, C. Y. Yang, G. L. Wu, W. Y. Wang, J. Guo, L. Li, K. L. Pang, Q. Li, C. H. Cui, S. Q. Liu, T. Tan, Z. Y. Tang, Sci. Adv. 2023, 9, 11.
- 4F. Y. Ma, P. Huang, J. Zhou, H. W. Zeng, J. W. Zhang, H. Zhao, Y. M. Dong, Y. F. Zhu, Y. Wang, Rare Met. 2024, 43, 6436–6446.
- 5F. Ma, P. Zhang, X. Zheng, L. Chen, Y. Li, Z. Zhuang, Y. Fan, P. Jiang, H. Zhao, J. Zhang, Y. Dong, Y. Zhu, D. Wang, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202412785.
- 6K. Yao, J. Li, A. Ozden, H. Wang, N. Sun, P. Liu, W. Zhong, W. Zhou, J. Zhou, X. Wang, H. Liu, Y. Liu, S. Chen, Y. Hu, Z. Wang, D. Sinton, H. Liang, Nat. Commun. 2024, 15, 1749.
- 7J. Zhou, B. He, P. Huang, D. Wang, Z. Zhuang, J. Xu, C. Pan, Y. Dong, D. Wang, Y. Wang, H. Huang, J. Zhang, Y. Zhu, Angew. Chem. Int. Ed. 2025, 64, e202418459.
- 8Y. Li, H. Zhang, T. Chen, Y. Sun, F. Rosei, M. Yu, Adv. Funct. Mater. 2024, 34, 2312970.
- 9J. Wang, Y. Qin, S. Jin, Y. Yang, J. Zhu, X. Li, X. Lv, J. Fu, Z. Hong, Y. Su, H. B. Wu, J. Am. Chem. Soc. 2023, 145, 26213–26221.
- 10S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672.
- 11W. Gao, Y. Xu, L. Fu, X. Chang, B. Xu, Nat. Catal. 2023, 6, 885–894.
- 12X. Wang, Z. Jiang, P. Wang, Z. Chen, T. Sheng, Z. Wu, Y. Xiong, Angew. Chem. Int. Ed. 2023, 62, e202313646.
- 13Q. Wu, R. Du, P. Wang, G. I. N. Waterhouse, J. Li, Y. Qiu, K. Yan, Y. Zhao, W. W. Zhao, H. J. Tsai, M. C. Chen, S. F. Hung, X. Wang, G. Chen, ACS Nano 2023, 17, 12884–12894.
- 14W. Zhang, S. Liu, Y. Yang, H. Qi, S. Xi, Y. Wei, J. Ding, Z. J. Wang, Q. Li, B. Liu, Z. Chen, Angew. Chem. Int. Ed. 2023, 62, e202219241.
- 15E. P. Delmo, Y. Wang, Y. Song, S. Zhu, H. Zhang, H. Xu, T. Li, J. Jang, Y. Kwon, Y. Wang, M. Shao, J. Am. Chem. Soc. 2024, 146, 1935–1945.
- 16L. Liu, J. Hu, Y. Sheng, H. Akhoundzadeh, W. Tu, W. J. S. Siow, J. H. Ong, H. Huang, R. Xu, ACS Nano 2024, 18, 26271–26280.
- 17H. Shen, Y. Zhao, L. Zhang, Y. He, S. Yang, T. Wang, Y. Cao, Y. Guo, Q. Zhang, H. Zhang, Adv. Energy Mater. 2023, 13, 2202818.
- 18D. Zhou, C. Chen, Y. Zhang, M. Wang, S. Han, X. Dong, T. Yao, S. Jia, M. He, H. Wu, B. Han, Angew. Chem. Int. Ed. 2024, 63, e202400439.
- 19J. M. Wang, Q. Y. Zhu, J. H. Lee, T. G. Woo, Y. X. Zhang, W. D. Jang, T. K. Kim, Nat. Commun. 2023, 14, 3808.
- 20L. Wang, J. Li, S. Ji, Y. Xiong, D. Wang, Energy Environ. Sci. 2024, 17, 8482–8528.
- 21F. Qian, L. Peng, D. Cao, W. Jiang, C. Hu, J. Huang, X. Zhang, J. Luo, S. Chen, X. Wu, L. Song, Q. Chen, Joule 2024, 8, 2342–2356.
- 22S. Kuang, Y. Su, M. Li, H. Liu, H. Chuai, X. Chen, E. J. M. Hensen, T. J. Meyer, S. Zhang, X. Ma, Proc. Natl. Acad. Sci 2023, 120, e2214175120.
- 23J. Li, Y. Chen, B. Yao, W. Yang, X. Cui, H. Liu, S. Dai, S. Xi, Z. Sun, W. Chen, Y. Qin, J. Wang, Q. He, C. Ling, D. Wang, Z. Zhang, J. Am. Chem. Soc. 2024, 146, 5693–5701.
- 24K. Yue, Y. Qin, H. Huang, Z. Lv, M. Cai, Y. Su, F. Huang, Y. Yan, Nat. Commun. 2024, 15, 7820.
- 25H. Liu, C. Yang, T. Bian, H. Yu, Y. Zhou, Y. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202404123.
- 26Y. Jiang, H. Li, C. Chen, Y. Zheng, S.-Z. Qiao, ACS Catal. 2024, 14, 8310–8316.
- 27J. Zhang, Y. Wang, Z. Li, S. Xia, R. Cai, L. Ma, T. Zhang, J. Ackley, S. Yang, Y. Wu, J. Wu, Adv. Sci. 2022, 9, e2200454.
- 28X. Y. Zhang, Z. X. Lou, J. Chen, Y. Liu, X. Wu, J. Y. Zhao, H. Y. Yuan, M. Zhu, S. Dai, H. F. Wang, C. Sun, P. F. Liu, H. G. Yang, Nat. Commun. 2023, 14, 7681.
- 29H. Li, Y. Jiang, X. Li, K. Davey, Y. Zheng, Y. Jiao, S. Z. Qiao, J. Am. Chem. Soc. 2023, 145, 14335–14344.
- 30Z. Jiang, C. Clavaguera, S. A. Denisov, J. Ma, M. Mostafavi, J. Am. Chem. Soc. 2024, 146, 30164–30173.
- 31Z. Yin, C. Yu, Z. Zhao, X. Guo, M. Shen, N. Li, M. Muzzio, J. Li, H. Liu, H. Lin, J. Yin, G. Lu, D. Su, S. Sun, Nano Lett. 2019, 19, 8658–8663.
- 32Z. Q. Liang, T. T. Zhuang, A. Seifitokaldani, J. Li, C. W. Huang, C. S. Tan, Y. Li, P. De Luna, C. T. Dinh, Y. Hu, Q. Xiao, P. L. Hsieh, Y. Wang, F. Li, R. Quintero-Bermudez, Y. Zhou, P. Chen, Y. Pang, S. C. Lo, L. J. Chen, H. Tan, Z. Xu, S. Zhao, D. Sinton, E. H. Sargent, Nat. Commun. 2018, 9, 3828.
- 33H. Jin, L. Li, X. Liu, C. Tang, W. Xu, S. Chen, L. Song, Y. Zheng, S. Z. Qiao, Adv. Mater. 2019, 31, e1902709.
- 34G. Wang, T. Huo, Q. Deng, F. Yu, Y. Xia, H. Li, W. Hou, Appl. Catal. B Environ. 2022, 310, 121319.
- 35J. Dai, Y. Tong, L. Zhao, Z. Hu, C. T. Chen, C. Y. Kuo, G. Zhan, J. Wang, X. Zou, Q. Zheng, W. Hou, R. Wang, K. Wang, R. Zhao, X. K. Gu, Y. Yao, L. Zhang, Nat. Commun. 2024, 15, 88.
- 36J. Han, J. Zhou, W. Song, H. Zhang, Z. Wang, K. Liu, Y. Li, W. Zhu, X. Sun, H. Liang, Appl. Catal. B Environ. 2024, 359, 124468.
- 37H. Liu, J. Huang, K. Feng, R. Xiong, S. Ma, R. Wang, Q. Fu, M. Rafique, Z. Liu, J. Han, D. Hua, J. Li, J. Zhong, X. Wang, Z. Zhao, T. Yao, S. Jiang, P. Xu, Z. Zhang, B. Song, Angew. Chem. Int. Ed. 2024, e202419595.
- 38C. Jia, S. Li, Y. Zhao, R. K. Hocking, W. Ren, X. Chen, Z. Su, W. Yang, Y. Wang, S. Zheng, F. Pan, C. Zhao, Adv. Funct. Mater. 2021, 31, 2107072.
- 39L. Dai, F. Yao, L. Yu, C. Fang, J. Li, L. Xue, S. Zhang, P. Xiong, Y. Fu, J. Sun, J. Zhu, Adv. Energy Mater. 2022, 12, 2200974.
- 40Y.-B. Yang, P. Chen, Q. Zhao, H.-S. Li, G.-R. Li, X.-P. Gao, Sol. RRL 2021, 5, 2100307.
- 41C. Zhao, G. Luo, X. Liu, W. Zhang, Z. Li, Q. Xu, Q. Zhang, H. Wang, D. Li, F. Zhou, Y. Qu, X. Han, Z. Zhu, G. Wu, J. Wang, J. Zhu, T. Yao, Y. Li, H. J. M. Bouwmeester, Y. Wu, Adv. Mater. 2020, 32, e2002382.
- 42D. Zheng, Y. Q. He, H. Ou-Yang, J. D. Zhang, G. Zhang, S. K. Han, Nano Lett. 2024, 24, 8887–8893.
- 43J. Zhang, X. Yang, G. Xu, B. K. Biswal, R. Balasubramanian, Adv. Mater. 2024, 36, e2309205.
- 44X. Li, C. Deng, Y. Kong, Q. Huo, L. Mi, J. Sun, J. Cao, J. Shao, X. Chen, W. Zhou, M. Lv, X. Chai, H. Yang, Q. Hu, C. He, Angew. Chem. Int. Ed. 2023, 62, e202309732.
- 45M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao, J. Duan, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 2022, 144, 14936–14944.
- 46Q. Li, J. Wu, L. Lv, L. Zheng, Q. Zheng, S. Li, C. Yang, C. Long, S. Chen, Z. Tang, Adv. Mater. 2024, 36, e2305508.
- 47J. Jiao, Q. Yuan, M. Tan, X. Han, M. Gao, C. Zhang, X. Yang, Z. Shi, Y. Ma, H. Xiao, J. Zhang, T. Lu, Nat. Commun. 2023, 14, 6164.
- 48Z. Zhang, S. Li, Q. Zhang, M. Li, L. Yang, W. Yan, H. Xu, Small 2024, 27, 2409001.
- 49H. Li, S. Cao, H. Sun, Y. Lu, Y. Zhang, X. Lu, J. Zeng, Z. Yan, Appl. Catal. B Environ. 2023, 320, 121948.
- 50M. Ebaid, K. Jiang, Z. Zhang, W. S. Drisdell, A. T. Bell, J. K. Cooper, Chem. Mater. 2020, 32, 3304–3311.
- 51Z. Zhang, S. Chen, J. Zhu, C. Ye, Y. Mao, B. Wang, G. Zhou, L. Mai, Z. Wang, X. Liu, D. Wang, Nano Lett. 2023, 23, 2312–2320.
- 52C. Peng, G. Luo, Z. Xu, S. Yan, J. Zhang, M. Chen, L. Qian, W. Wei, Q. Han, G. Zheng, Adv. Mater. 2021, 33, e2103150.
- 53Y. Mi, S. Shen, X. Peng, H. Bao, X. Liu, J. Luo, ChemElectroChem 2019, 6, 2393–2397.
- 54W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 2020, 3, 478–487.
- 55S. Bai, W. Jing, G. He, C. Liao, F. Wang, Y. Liu, L. Guo, ACS Nano 2023, 17, 10976–10986.