A Simple Quinoid Building Block for Polymer Semiconductors with Tunable Polarity and High n-Type Thermoelectric Performance
This article relates to:
-
Inside Back Cover: A Simple Quinoid Building Block for Polymer Semiconductors with Tunable Polarity and High n-Type Thermoelectric Performance (Angew. Chem. Int. Ed. 28/2025)
- Weipeng Sun,
- Sergio Gámez-Valenzuela,
- Xiage Zhang,
- Jin-Woo Lee,
- Zhicheng Zhong,
- Peng Wang,
- Suxiang Ma,
- Hanqiang Wang,
- Bumjoon J. Kim,
- Xugang Guo,
- Volume 64Issue 28Angewandte Chemie International Edition
- First Published online: May 28, 2025
Weipeng Sun
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorSergio Gámez-Valenzuela
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorXiage Zhang
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorJin-Woo Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorZhicheng Zhong
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorPeng Wang
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorSuxiang Ma
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorHanqiang Wang
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Department of Chemistry and Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, Dongguan, Guangdong, 523000 China
Search for more papers by this authorBumjoon J. Kim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorCorresponding Author
Xugang Guo
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]
Search for more papers by this authorWeipeng Sun
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorSergio Gámez-Valenzuela
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorXiage Zhang
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorJin-Woo Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorZhicheng Zhong
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorPeng Wang
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorSuxiang Ma
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorHanqiang Wang
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Department of Chemistry and Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, Dongguan, Guangdong, 523000 China
Search for more papers by this authorBumjoon J. Kim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorCorresponding Author
Xugang Guo
Shenzhen Key Laboratory of Printed Electronics, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
A simple quinoid building block TTD, featuring small steric hindrance and high electron deficiency, was obtained via a one-step synthesis. Unexpectedly, the TTD-based polymers showed tunable charge carrier polarity from p-type to ambipolar and ultimately to n-type upon thermal annealing, and the n-doped polymers attained remarkable thermoelectric performance with a power factor of 36.7 µW m−1 K−2.
Abstract
π-Conjugated polymers with deep-positioned lowest unoccupied molecular orbital (LUMO) level and large electron mobility are highly pursued as n-type organic thermoelectric materials. Herein, we synthesized a simple structured electron-deficient quinoid building block, thieno[3,2-b]thiophene-2,5-dione (TTD), via one step from a low-cost starting material. Based on TTD, polymers PQD and PQTD were successfully developed, featuring remarkably low-lying LUMO levels (−3.91 eV for PQD and −3.73 eV for PQTD), which greatly facilitate n-doping process. Unexpectedly, it was found that charge carrier polarity of PQD and PQTD can be tuned from p-type to ambipolar and finally to n-type in organic field-effect transistors after thermal treatment, an unprecedented phenomenon in polymer semiconductors. Organic thermoelectric devices based on n-doped PQD films showed an excellent electrical conductivity up to 19.1 S cm−1 and a power factor of 36.7 µW m−1 K−2. To the best of our knowledge, this PF value ranks the highest reported to date for n-doped quinoid-based polymers. This work underscores the great potential of structurally simple and readily accessible electron-deficient quinoid TTD for the development of high-performing n-type polymer semiconductors.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202501196-sup-0001-SuppMat.docx7.1 MB | Supporting Information |
anie202501196-sup-0002-SuppMat.zip19.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Berggren, D. Nilsson, N. D. Robinson, Nat. Mater. 2007, 6, 3–5.
- 2F. Molina-Lopez, T. Z. Gao, U. Kraft, C. Zhu, T. Öhlund, R. Pfattner, V. R. Feig, Y. Kim, S. Wang, Y. Yun, Z. Bao, Nat. Commun. 2019, 10, 2676.
- 3X. Yan, M. Xiong, J. T. Li, S. Zhang, Z. Ahmad, Y. Lu, Z. Y. Wang, Z. F. Yao, J. Y. Wang, X. Gu, T. Lei, J. Am. Chem. Soc. 2019, 141, 20215–20221.
- 4A. Tripathi, Y. Lee, S. Lee, H. Y. Woo, J. Mater. Chem. C 2022, 10, 6114–6140.
- 5G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105–114.
- 6L. Tu, J. Wang, Z. Wu, J. Li, W. Yang, B. Liu, S. Wu, X. Xia, Y. Wang, H. Y. Woo, Y. Shi, Angew. Chem. Int. Ed. 2024, e202319658.
- 7Y. Lu, Z.-D. Yu, Y. Liu, Y.-F. Ding, C.-Y. Yang, Z.-F. Yao, Z.-Y. Wang, H.-Y. You, X.-F. Cheng, B. Tang, J.-Y. Wang, J. Pei, J. Am. Chem. Soc. 2020, 142, 15340–15348.
- 8J. Han, C. Ganley, Q. Hu, X. Zhao, P. Clancy, T. P. Russell, H. E. Katz, Adv. Funct. Mater. 2021, 31, 2010567.
- 9Y. Xia, K. Sun, J. Ouyang, Adv. Mater. 2012, 24, 2436–2440.
- 10T. Park, C. Park, B. Kim, H. Shin, E. Kim, Energy Environ. Sci. 2013, 6, 788–792.
- 11D. Wang, J. Ding, Y. Ma, C. Xu, Z. Li, X. Zhang, Y. Zhao, Y. Zhao, Y. Di, L. Liu, X. Dai, Y. Zou, B. Kim, F. Zhang, Z. Liu, I. McCulloch, M. Lee, C. Chang, X. Yang, D. Wang, D. Zhang, L.-D. Zhao, C.-a. Di, D. Zhu, Nature 2024, 632, 528–535.
- 12V. Vijayakumar, Y. Zhong, V. Untilova, M. Bahri, L. Herrmann, L. Biniek, N. Leclerc, M. Brinkmann, Adv. Energy Mater. 2019, 9, 1900266.
- 13Y. Zhong, V. Untilova, D. Muller, S. Guchait, C. Kiefer, L. Herrmann, N. Zimmermann, M. Brosset, T. Heiser, M. Brinkmann, Adv. Funct. Mater. 2022, 32, 2202075.
- 14T. Shen, D. Liu, J. Zhang, Z. Wei, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202409018.
- 15S. Deng, Y. Kuang, L. Liu, X. Liu, J. Liu, J. Li, B. Meng, C. a. Di, J. Hu, J. Liu, Adv. Mater. 2024, 36, 2309679.
- 16S. Wang, H. Sun, T. Erdmann, G. Wang, D. Fazzi, U. Lappan, Y. Puttisong, Z. Chen, M. Berggren, X. Crispin, A. Kiriy, B. Voit, T. J. Marks, S. Fabiano, A. Facchetti, Adv. Mater. 2018, 30, 1801898.
- 17F. S. Kim, X. Guo, M. D. Watson, S. A. Jenekhe, Adv. Mater. 2010, 22, 478–482.
- 18H. Li, F. S. Kim, G. Ren, E. C. Hollenbeck, S. Subramaniyan, S. A. Jenekhe, Angew. Chem. Int. Ed. 2013, 52, 5513–5517.
- 19K. Feng, W. Yang, S. Y. Jeong, S. Ma, Y. Li, J. Wang, Y. Wang, H. Y. Woo, P. K. L. Chan, G. Wang, X. Guo, M. Zhu, Adv. Mater. 2023, 35, e2210847.
- 20Z. Fan, D. Du, X. Guan, J. Ouyang, Nano Energy 2018, 51, 481–488.
- 21R. A. Schlitz, F. G. Brunetti, A. M. Glaudell, P. L. Miller, M. A. Brady, C. J. Takacs, C. J. Hawker, M. L. Chabinyc, Adv. Mater. 2014, 26, 2825–2830.
- 22K. Feng, J. Wang, S. Y. Jeong, W. Yang, J. Li, H. Y. Woo, X. Guo, Adv. Sci. 2023, 10, 2302629.
- 23S. Gámez-Valenzuela, J. Li, S. Ma, S. Y. Jeong, H. Y. Woo, K. Feng, X. Guo, Angew. Chem. Int. Ed. 2024, e202408537.
- 24Y. Shi, J. Li, H. Sun, Y. Li, Y. Wang, Z. Wu, S. Y. Jeong, H. Y. Woo, S. Fabiano, X. Guo, Angew. Chem. Int. Ed. 2022, 61, e202214192.
- 25C.-S. Dong, B. Meng, J. Liu, L.-X. Wang, Chinese J. Polym. Sci. 2023, 41, 108–116.
- 26C. Dong, S. Deng, B. Meng, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2021, 60, 16184–16190.
- 27Y. Lu, Z. D. Yu, H. I. Un, Z. F. Yao, H. Y. You, W. Jin, L. Li, Z. Y. Wang, B. W. Dong, S. Barlow, E. Longhi, C. a. Di, D. Zhu, J. Y. Wang, C. Silva, S. R. Marder, J. Pei, Adv. Mater. 2021, 33, 2005946.
- 28Y. Lu, Z. D. Yu, R. Z. Zhang, Z. F. Yao, H. Y. You, L. Jiang, H. I. Un, B. W. Dong, M. Xiong, J. Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 11390–11394.
- 29H. Tang, Y. Liang, C. Liu, Z. Hu, Y. Deng, H. Guo, Z. Yu, A. Song, H. Zhao, D. Zhao, Y. Zhang, X. Guo, J. Pei, Y. Ma, Y. Cao, F. Huang, Nature 2022, 611, 271–277.
- 30J. T. Li, T. Lei, Chem. Asian J. 2021, 16, 1508–1518.
- 31R. Wu, W. Yu, X. Dai, L. Yan, W. Liu, D. Yuan, J. Zhu, X. Zhu, Angew. Chem. Int. Ed. 2024, 64, e202413061.
- 32J. Huang, G. Yu, Mater. Chem. Front. 2021, 5, 76–96.
- 33C. Zhang, X. Zhu, Adv. Funct. Mater. 2020, 30, 2000765.
- 34Y. Kim, Y.-J. Kim, Y.-A. Kim, E. Jung, Y. Mok, K. Kim, H. Hwang, J.-J. Park, M.-G. Kim, S. Mathur, D.-Y. Kim, ACS Appl. Mater. Inter. 2021, 13, 2887–2898.
- 35X. Ji, L. Fang, Polym. Chem. 2021, 12, 1347–1361.
- 36T. Takahashi, K. Matsuoka, K. Takimiya, T. Otsubo, Y. Aso, J. Am. Chem. Soc. 2005, 127, 8928–8929.
- 37W. Chen, F. Yu, Q. Xu, G. Zhou, Q. Zhang, Adv. Sci. 2020, 7, 1903766.
- 38D. Huang, C. Wang, Y. Zou, X. Shen, Y. Zang, H. Shen, X. Gao, Y. Yi, W. Xu, C. A. Di, D. Zhu, Angew. Chem. Int. Ed. 2016, 55, 10672–10675.
- 39D. Huang, H. Yao, Y. Cui, Y. Zou, F. Zhang, C. Wang, H. Shen, W. Jin, J. Zhu, Y. Diao, W. Xu, C.-A. Di, D. Zhu, J. Am. Chem. Soc. 2017, 139, 13013–13023.
- 40D. Yuan, D. Huang, S. M. Rivero, A. Carreras, C. Zhang, Y. Zou, X. Jiao, C. R. McNeill, X. Zhu, C.-A. Di, D. Zhu, D. Casanova, J. Casado, Chem 2019, 5, 964–976.
- 41K. Yang, X. Zhang, A. Harbuzaru, L. Wang, Y. Wang, C. Koh, H. Guo, Y. Shi, J. Chen, H. Sun, K. Feng, M. C. Ruiz Delgado, H. Y. Woo, R. P. Ortiz, X. Guo, J. Am. Chem. Soc. 2020, 142, 4329–4340.
- 42H. Hwang, D. Khim, J. M. Yun, E. Jung, S. Y. Jang, Y. H. Jang, Y. Y. Noh, D. Y. Kim, Adv. Funct. Mater. 2015, 25, 1146–1156.
- 43Y. Kim, H. Hwang, N. K. Kim, K. Hwang, J. J. Park, G. I. Shin, D. Y. Kim, Adv. Mater. 2018, 30, e1706557.
- 44K. Kawabata, M. Saito, I. Osaka, K. Takimiya, J. Am. Chem. Soc. 2016, 138, 7725–7732.
- 45Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 3459–3462.
- 46X. Geng, T. Du, C. Xu, Y. Liu, Y. Deng, Y. Geng, Adv. Funct. Mater. 2023, 33, 2300809.
- 47T. Du, Y. Liu, Y. Deng, Y. Geng, Chin. J. Chem. 2023, 41, 776–782.
- 48H. Cai, H. Tang, T. Wang, C. Xu, J. Xie, M. Fu, X. Luo, Z. Hu, Y. Zhang, Y. Deng, G. Li, C. Liu, F. Huang, Y. Cao, Angew. Chem. Int. Ed. 2024, 63, e202402375.
- 49Y. Kim, Y. Choi, H. Hwang, M. Kang, K. Hwang, M.-H. Lee, D.-Y. Kim, ACS Appl. Polym. Mater. 2022, 4, 8520–8526.
- 50S. Lu, M. Drees, Y. Yao, D. Boudinet, H. Yan, H. Pan, J. Wang, Y. Li, H. Usta, A. Facchetti, Macromolecules 2013, 46, 3895–3906.
- 51T. Mikie, I. Osaka, J. Mater. Chem. C 2020, 8, 14262–14288.
- 52Y. Sun, Y. Guo, Y. Liu, Mater. Sci. Eng. R Rep. 2019, 136, 13–26.
- 53K. Kawabata, K. Takimiya, Chem. Mater. 2023, 35, 7628–7642.
- 54K. Kawabata, I. Osaka, M. Sawamoto, J. L. Zafra, P. Mayorga Burrezo, J. Casado, K. Takimiya, Chem. Eur. J. 2017, 23, 4579–4589.
- 55I. Osaka, T. Abe, H. Mori, M. Saito, N. Takemura, T. Koganezawa, K. Takimiya, J. Mater. Chem. C 2014, 2, 2307–2312.
- 56K. Kawabata, I. Osaka, M. Nakano, N. Takemura, T. Koganezawa, K. Takimiya, Adv. Electron. Mater. 2015, 1, 1500039.
- 57J. Li, Z. Chen, J. Wang, S. Young Jeong, K. Yang, K. Feng, J. Yang, B. Liu, H. Y. Woo, X. Guo, Angew. Chem. Int. Ed. 2023, 62, e202307647.
- 58C. Wang, J. Zhang, G. Long, N. Aratani, H. Yamada, Y. Zhao, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 6292–6296.
- 59A. E. London, H. Chen, M. A. Sabuj, J. Tropp, M. Saghayezhian, N. Eedugurala, B. A. Zhang, Y. Liu, X. Gu, B. M. Wong, N. Rai, M. K. Bowman, J. D. Azoulay, Sci. Adv. 2019, 5, eaav2336.
- 60Z. Chen, W. Li, M. A. Sabuj, Y. Li, W. Zhu, M. Zeng, C. S. Sarap, M. M. Huda, X. Qiao, X. Peng, D. Ma, Y. Ma, N. Rai, F. Huang, Nat. Commun. 2021, 12, 5889.
- 61S. Gámez-Valenzuela, M. Comí, S. R. González, M. C. R. Delgado, M. Al-Hashimi, R. P. Ortiz, J. Mater. Chem. C 2023, 11, 8027–8036.
- 62H. Guo, C. Y. Yang, X. Zhang, A. Motta, K. Feng, Y. Xia, Y. Shi, Z. Wu, K. Yang, J. Chen, Q. Liao, Y. Tang, H. Sun, H. Y. Woo, S. Fabiano, A. Facchetti, X. Guo, Nature 2021, 599, 67–73.
- 63D. T. Scholes, P. Y. Yee, J. R. Lindemuth, H. Kang, J. Onorato, R. Ghosh, C. K. Luscombe, F. C. Spano, S. H. Tolbert, B. J. Schwartz, Adv. Funct. Mater. 2017, 27, 1702654.
- 64R. Kroon, D. Kiefer, D. Stegerer, L. Yu, M. Sommer, C. Muller, Adv. Mater. 2017, 29, 1700930.
- 65A. Abutaha, P. Kumar, E. Yildirim, W. Shi, S. W. Yang, G. Wu, K. Hippalgaonkar, Nat. Commun. 2020, 11, 1737.
- 66X. Yang, G. Ye, J. Liu, R. C. Chiechi, L. J. A. Koster, Adv. Mater. 2024, 36, e2404397.
- 67D. Nava, Y. Shin, M. Massetti, X. Jiao, T. Biskup, M. S. Jagadeesh, A. Calloni, L. Duò, G. Lanzani, C. R. McNeill, M. Sommer, M. Caironi, ACS Appl. Energy Mater. 2018, 1, 4626–4634.
- 68K. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2021, 143, 1539–1552.
- 69H. N. Tsao, W. Pisula, Z. Liu, W. Osikowicz, W. R. Salaneck, K. Müllen, Adv. Mater. 2008, 20, 2715–2719.
- 70J. C. Ribierre, S. Watanabe, M. Matsumoto, T. Muto, T. Aoyama, Appl. Phys. Lett. 2010, 96, 083303.
- 71Y. Wang, T. Hasegawa, H. Matsumoto, T. Michinobu, Angew. Chem. Int. Ed. 2019, 58, 11893–11902.
- 72Y. Huang, X. Gong, Y. Meng, Z. Wang, X. Chen, J. Li, D. Ji, Z. Wei, L. Li, W. Hu, Nat. Commun. 2021, 12, 21.
- 73J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, A. Salleo, Nat. Mater. 2009, 8, 952–958.
- 74Y. Wang, S. Sun, Y. Huang, Y. Fu, J. Qi, K. Tie, Z. Wang, F. Jiao, R. Si, X. Chen, L. Li, W. Hu, Aggregate 2023, 4, e379.
- 75H. F. Haneef, A. M. Zeidell, O. D. Jurchescu, J. Mater. Chem. C 2020, 8, 759–787.