High-Performance Perovskite Solar Cells via 3D Covalent Organic Frameworks: Enhanced Efficiency Through Precision Interface Engineering
Shanyue Wei
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
Both authors contributed equally to this work.
Search for more papers by this authorWeichun Pan
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
Both authors contributed equally to this work.
Search for more papers by this authorJia Liu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
Search for more papers by this authorJihuai Wu
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
Search for more papers by this authorCorresponding Author
Yiming Xie
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaowei Wu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Can-Zhong Lu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShanyue Wei
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
Both authors contributed equally to this work.
Search for more papers by this authorWeichun Pan
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
Both authors contributed equally to this work.
Search for more papers by this authorJia Liu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
Search for more papers by this authorJihuai Wu
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
Search for more papers by this authorCorresponding Author
Yiming Xie
Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaowei Wu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Can-Zhong Lu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Two donor-acceptor 3D COFs synthesized via Schiff base reactions were integrated into perovskite solar cells’ SAMs. Their architecture enabled efficient charge separation, stable interfacial anchoring, and optimized energy alignment, enhancing hole transport and perovskite quality and reduced defect density. This achieving PCEs up to 25.20%, demonstrating COFs' potential in advancing PSC efficiency.
Abstract
Covalent organic frameworks (COFs), a class of porous polymers with tunable 2D or 3D structures, have drawn significant attention for their exceptional versatility across various applications. Recently, the integration of COFs into perovskite solar cells (PSCs) has emerged as a promising strategy to address critical challenges, such as instability, interfacial recombination losses, and lead-associated environmental risks. Enhanced charge transport channels, passivation of defects, and customizable molecule architectures are some of the special benefits that COFs offer. In this study, we used Schiff base reactions to create two donor–acceptor (D-A) type COFs with an 8+2 connection motif, which were integrated into PSC self-assembled (SAM) layers. According to characterizations and theoretical calculations, COFs not only effectively optimize the energy level of the ITO/SAM substrate but also passivate perovskite defects and suppress defect-assisted recombination in PSC devices. These modifications significantly enhanced carrier transport and extraction, resulting in an increase in power conversion efficiency (PCE) from 22.57% to 25.20% (DP-BE) and 24.21% (DP-DBE). This work highlights the potential of COFs as multifunctional modifiers for interfacial engineering in PSCs, offering a promising route to improve device performance and stability.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202500163-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548–568.
- 2A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 3H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268–272.
- 4K. Y. Geng, T. He, R. Y. Liu, S. S. K. Dalapati, K. T. Tan, Z. P. Li, S. S. Tao, Y. F. Gong, Q. H. Jiang, D. L. Jiang, Chem. Rev. 2020, 120, 8814–8933.
- 5F. Haase, B. V. Lotsch, Chem. Soc. Rev. 2020, 49, 8469–8500.
- 6A. Knebel, J. Caro, Nat. Nanotechnol. 2022, 17, 911–923.
- 7X. K. Wang, F. Gao, Z. X. Kang, W. D. Fan, D. F. Sun, J. Mater. Chem. A 2023, 11, 20368–20382.
- 8Y. F. Zhi, Z. R. Wang, H.-L. Zhang, Q. C. Zhang, Small 2020, 16, 2001070.
- 9H. Wang, Z. T. Zeng, P. Xu, L. S. Li, G. M. Zeng, R. Xiao, Z. Y. Tang, D. L. Huang, L. Tang, C. Lai, D. N. Jiang, Y. Liu, H. Yi, L. Qin, S. J. Ye, X. Y. Ren, W. W. Tang, Chem. Soc. Rev. 2019, 48, 488–516.
- 10W. G. Tu, Y. Xu, S. M. Yin, R. Xu, Adv. Mater. 2018, 30, 1707582.
- 11Y. G. Zhang, J. Y. Ying, ACS Catal. 2015, 5, 2681–2691.
- 12S. C. Jesudass, S. Surendran, G. Janani, T. Kim, U. Sim, Adv. Energy Mater. 2023, 13, 2301918.
- 13Q. B. Cao, L. Wan, Z. A. Xu, W. M. Kuang, H. Liu, X. Zhang, W. L. Zhang, Y. Lu, Y. J. Yao, B. G. Wang, K. Liu, Adv. Mater. 2023, 35, 2210550.
- 14Z.-J. Zheng, H. Ye, Z.-P. Guo, Energy Environ. Sci. 2021, 14, 1835–1853.
- 15W. K. Haug, E. M. Moscarello, E. R. Wolfson, P. L. McGrier, Chem. Soc. Rev. 2020, 49, 839–864.
- 16N. Keller, T. Bein, Chem. Soc. Rev. 2021, 50, 1813–1845.
- 17T. He, Y. L. Zhao, Angew. Chem. Int. Ed. 2023, 135, e202303086.
- 18X. Li, P. Yadav, K. P. Loh, Chem. Soc. Rev. 2020, 49, 4835–4866.
- 19Y. S. Li, W. B. Chen, G. L. Xing, D. L. Jiang, L. Chen, Chem. Soc. Rev. 2020, 49, 2852–2868.
- 20E. Ploetz, H. Engelke, U. Laechelt, S. Wuttke, Adv. Funct. Mater. 2020, 30, 1909062.
- 21A. M. Evans, L. R. Parent, N. C. Flanders, R. P. Bisbey, E. Vitaku, M. S. Kirschner, R. D. Schaller, L. X. Chen, N. C. Gianneschi, W. R. Dichtel, Science 2018, 361, 52–57.
- 22G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T.-W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.-G. Boyen, S. Bent, F. Giustino, L. M. Herz, M. B. Johnston, M. D. McGehee, H. J. Snaith, Science 2016, 354, 861–865.
- 23A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 24M. Vasilopoulou, A. Fakharuddin, A. G. Coutsolelos, P. Falaras, P. Argitis, Abd. R. B. M. Yusoff, M. K. Nazeeruddin, Chem. Soc. Rev. 2020, 49, 4496–4526.
- 25M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Adv. Energy Mater. 2020, 10, 1904102.
- 26E. M. Hutter, J. Hofman, M. L. Petrus, M. Moes, R. D. Abellón, P. Docampo, T. J. Savenije, Adv. Energy Mater. 2017, 7, 1602349.
- 27Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, https://www.nrel.gov/pv/cell-efficiency.html (accessed: April 27, 2025)
- 28S. Albrecht, B. Rech, Nat. Energy 2017, 2, 16196.
- 29R. X. Lin, K. Xiao, Z. Y. Qin, Q. L. Han, C. F. Zhang, M. Y. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. D. Li, J. Zhu, E. H. Sargent, H. R. Tan, Nat. Energy 2019, 4, 864–873.
- 30R. X. Lin, J. Xu, M. Y. Wei, Y. R. Wang, Z. Y. Qin, Z. Liu, J. L. Wu, K. Xiao, B. Chen, S. M. Park, G. Chen, H. R. Atapattu, K. R. Graham, J. Xu, J. Zhu, L. D. Li, C. F. Zhang, E. H. Sargent, H. R. Tan, Nature 2022, 603, 73–78.
- 31Q. Jiang, J. H. Tong, Y. M. Xian, R. A. Kerner, S. P. Dunfield, C. X. Xiao, R. A. Scheidt, D. Kuciauskas, X. M. Wang, M. P. Hautzinger, R. Tirawat, M. C. Beard, D. P. Fenning, J. J. Berry, B. W. Larson, Y. F. Yan, K. Zhu, Nature 2022, 611, 278–283.
- 32H. Y. Li, C. Zhang, C. Gong, D. L. Zhang, H. Zhang, Q. X. Zhuang, X. M. Yu, S. K. Gong, X. H. Chen, J. B. Yang, X. H. Li, R. Li, J. W. Li, J. F. Zhou, H. Yang, Q. Q. Lin, J. H. Chu, M. Grätzel, J. Z. Chen, Z. G. Zang, Nat. Energy 2023, 8, 946–955.
- 33M. Kim, J. Jeong, H. Z. Lu, T. K. Lee, F. T. Eickemeyer, Y. H. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Grätzel, D. S. Kim, Science 2022, 375, 302–306.
- 34S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, M. Yu, F. Yu, Y. Zhang, R. Wu, Z. Liu, Z. Ning, D. Neher, L. Han, Y. Lin, H. Tian, W. Chen, M. Stolterfoht, L. Zhang, W.-H. Zhu, Y. Wu, Science 2023, 380, 404–409.
- 35S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391–402.
- 36C. Liu, Y. Yang, H. Chen, J. Xu, A. Liu, A. S. R. Bati, H. H. Zhu, L. Grater, S. S. Hadke, C. Y. Huang, V. K. Sangwan, T. Cai, D. Shin, L. X. Chen, M. C. Hersam, C. A. Mirkin, B. Chen, M. G. Kanatzidis, E. H. Sargent, Science 2023, 382, 810–815.
- 37N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, N.-G. Park, J. Am. Chem. Soc. 2015, 137, 8696–8699.
- 38Z. Yang, J. J. Dou, S. Kou, J. L. Dang, Y. Q. Ji, G. J. Yang, W. Wu, D. Kuang, M. Q. Wang, Adv. Funct. Mater. 2020, 30, 1910710.
- 39J.-W. Lee, H.-S. Kim, N.-G. Park, Acc. Chem. Res. 2016, 49, 311–319.
- 40J. S. Zhang, J. L. Duan, Q. Y. Guo, Q. Y. Zhang, Y. Y. Zhao, H. Huang, Y. Y. Duan, Q. W. Tang, ACS Energy Lett. 2022, 7, 3467–3475.
- 41Y. F. Liu, Y. F. Zhu, S. B. Alahakoon, E. Egap, ACS Mater. Lett. 2020, 2, 1561–1566.
- 42S. H. Wang, T. Wu, J. J. Guo, R. J. Zhao, Y. Hua, Y. L. Zhao, ACS Cent. Sci. 2024, 10, 1383–1395.
- 43J. He, H. L. Liu, F. Zhang, X. G. Li, S. R. Wang, Adv. Funct. Mater. 2022, 32, 2110030.
- 44T. Y. Zhang, V. G. Gregoriou, N. Gasparini, C. L. Chochos, Chem. Soc. Rev. 2022, 51, 4465–4483.
- 45H. R. Abuzeid, D. J. J. Tay, B. Febriansyah, A. Kanwat, T. Salim, A. A. Zhumekenov, S. A. Pullarkat, N. Mathews, Small Meth. 2024, n/a, 2400666.
- 46N. N. Wang, S.-Q. Ye, M. J. Li, H. Pan, G.-W. Wang, Sol. RRL 2024, 8, 2300790.
- 47Q. Y. Lin, S. Y. Tan, J. W. Zhao, X. Fang, Y. Wang, N. Wen, Z. Z. Zhang, Z. X. Ding, R. S. Yuan, G. Y. Yan, S. Y. Jin, J. L. Long, Small 2024, 20, 2304776.
- 48J. He, L. F. Yuan, S. X. Gu, J. Bai, Y. X. Li, S. R. Wang, D. W. Li, H. L. Liu, J. Mater. Chem. A 2024, 12, 24380–24390.
- 49F. Q. Li, X. F. Huang, Y. Li, X. R. Du, E. Yang, Y. Ahn, B. R. Lee, B. H. Wu, S. H. Park, Adv. Funct. Mater. 34, 2024, 2409811.
- 50X. Liang, C. Q. Han, F. Wang, J. J. Wu, X. F. Zhou, H. R. Lin, X. Y. Liu, Q. Y. Zhu, G. Li, H. L. Hu, Chem. Eng. J. 2023, 477, 147235.
- 51G. P. Meng, L. P. Zhen, S. H. Sun, J. Hai, Z. F. Zhang, D. N. Sun, Q. Liu, B. D. Wang, J. Mater. Chem. A 2021, 9, 24365–24373.
- 52Y. Y. Dong, J. A. Zhang, H. Y. Zhang, W. Wang, B. Y. Hu, D. B. Xia, K. F. Lin, L. Geng, Y. L. Yang, Nano Micro Lett. 2024, 16, 171.
- 53C. Y. Wu, Y. M. Liu, H. Liu, C. H. Duan, Q. Y. Pan, J. Zhu, F. Hu, X. Y. Ma, T. G. Jiu, Z. B. Li, Y. J. Zhao, J. Am. Chem. Soc. 2018, 140, 10016–10024.
- 54L. Y. Yao, S. N. Liu, L. Li, B. D. Ge, W. Y. Jiao, S. Y. Zong, X. W. Song, D. L. Zhou, Z. Q. Liang, CCS Chem. 2024, 6, 1721–1730.
- 55F. Z. Jin, E. Lin, T. Wang, S. B. Geng, L. Q. Hao, Q. Q. Zhu, Z. F. Wang, Y. Chen, P. Cheng, Z. J. Zhang, J. Am. Chem. Soc. 2022, 144, 23081–23088.
- 56Deposition numbers 2434669 (for DP-BE) and 2434667 (for DP-DBE) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre.
- 57R. W. He, W. C. Pan, P. X. Chen, Q. S. Zheng, A. L. Tong, J. X. Pan, Z. H. Jin, W. H. Sun, Y. L. Li, J. H. Wu, Nano Energy 2024, 131, 110268.
- 58C. Zhang, S. Yuan, Y. Lou, Q. Liu, M. Li, H. Okada, Z. Wang, Adv. Mater. 2020, 32, 2001479.
- 59L. A. Muscarella, B. Ehrler, Joule 2022, 6, 2016–2031.
- 60C. Zhu, X. X. Niu, Y. H. Fu, N. X. Li, C. Hu, Y. H. Chen, X. He, G. R. Na, P. F. Liu, H. C. Zai, Y. Ge, Y. Lu, X. X. Ke, Y. Bai, S. H. Yang, P. W. Chen, Y. J. Li, M. L. Sui, L. J. Zhang, H. P. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 61Z. H. Dai, S. K. Yadavalli, M. Chen, A. Abbaspourtamijani, Y. Qi, N. P. Padture, Science 2021, 372, 618–622.