High-Efficiency Ion Transport in Ultrathin 3D Covalent Organic Framework Nanofluidics
Haoyang Ling
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorQingchen Wang
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorZidi Yan
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorXuanze Li
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
Search for more papers by this authorKehan Zou
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorYaoxu He
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorKe Li
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorYanglansen Cui
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorTianchi Liu
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
Search for more papers by this authorWeipeng Chen
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
Search for more papers by this authorHuaqing Du
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorYang Liu
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorCorresponding Author
Weiwen Xin
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiang-Yu Kong
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLei Jiang
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Institute for Biomedical Materials & Devices, University of Technology Sydney, Sydney, NSW, 2007 Australia
Search for more papers by this authorCorresponding Author
Liping Wen
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHaoyang Ling
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorQingchen Wang
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorZidi Yan
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorXuanze Li
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
Search for more papers by this authorKehan Zou
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorYaoxu He
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorKe Li
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorYanglansen Cui
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorTianchi Liu
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
Search for more papers by this authorWeipeng Chen
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
Search for more papers by this authorHuaqing Du
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorYang Liu
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorCorresponding Author
Weiwen Xin
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiang-Yu Kong
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLei Jiang
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Institute for Biomedical Materials & Devices, University of Technology Sydney, Sydney, NSW, 2007 Australia
Search for more papers by this authorCorresponding Author
Liping Wen
Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P.R. China
State Key Laboratory of Bioinspired Interfacial Materials Science,Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P.R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This work well manipulates the ion transport in nanoconfined channels by employing 3D covalent organic frameworks (3D-COFs). Owing to their continuously interpenetrated pathways and well-ordered pore arrangements, 3D-COF nanofluidics demonstrated high ionic flux and cation selectivity. Toward osmotic energy applications, 3D-COF nanofluidics output an ultrahigh power density of 1238.2 W m−2 under a 500-fold salinity gradient.
Abstract
High-efficiency ion transport is essential for both biological and nonbiological processes, including the regulation of cell homeostasis, energy conversion, and mass transfer in chemical industry. Nanofluidic channels are considered ideal platforms for delicate control of ion transport in their unique nanoconfinement, yet currently reported 1D and 2D nanofluidics are subjected to elevated transport resistance due to discontinuous and random channels. Here, we engineer ultrathin, 3D covalent organic framework (3D-COF) nanofluidics featuring continuously interpenetrated pathways and well-ordered pore arrangements, demonstrating superior ion conductance. The energy barrier for ion transport across 3D-COF nanofluidics is exceptionally low, suggesting ultrafast and low-resistance ion movements. Theoretical calculations indicate that 3D-COF nanofluidics facilitate group adsorption to anions, leading to high energy barriers for anion mobility, thus enhancing ion selectivity and high-throughput cation transport. In osmotic energy applications, 3D-COF nanofluidics achieve a power density of 217.7 W m−2 with artificial seawater and river water, potentially scalable to 1238.2 W m−2 under a 500-fold salinity gradient. The proposed 3D-COF nanofluidics offer new avenues for desalination and ion/molecular separation.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
anie202423073-supp-0001-SuppMat.docx4.9 MB | Supplementary Materials |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. R. Martin, Z. S. Siwy, Science 2007, 317, 331–332.
- 2R. J. White, E. N. Ervin, T. Yang, X. Chen, S. Daniel, P. S. Cremer, H. S. White, J. Am. Chem. Soc. 2007, 129, 11766–11775.
- 3N. Reyes, D. C. Gadsby, Nature 2006, 443, 470–474.
- 4W. A. Catterall, Science 1988, 242, 50–61.
- 5Z. Zhang, L. Wen, L. Jiang, Nat. Rev. Mater. 2021, 6, 622–639.
- 6A. Esfandiar, B. Radha, F. C. Wang, Q. Yang, S. Hu, S. Garaj, R. R. Nair, A. K. Geim, K. Gopinadhan, Science 2017, 358, 511–513.
- 7F. Xia, W. Guo, Y. Mao, X. Hou, J. Xue, H. Xia, L. Wang, Y. Song, H. Ji, Q. Ouyang, Y. Wang, L. Jiang, J. Am. Chem. Soc. 2008, 130, 8345–8350.
- 8L. Bocquet, E. Charlaix, Chem. Soc. Rev. 2010, 39, 1073–1095.
- 9H. Ling, W. Xin, Y. Qian, X. He, L. Yang, W. Chen, Y. Wu, H. Du, Y. Liu, X.-Y. Kong, L. Jiang, L. Wen, Angew. Chem. Int. Ed. 2023, 62, e202212120.
- 10Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, X. Feng, Nat. Commun. 2019, 10, 2920.
- 11Q. Zhu, Y. Li, Q. Qian, P. Zuo, M. D. Guiver, Z. Yang, T. Xu, Energy Environ. Sci. 2022, 15, 4148–4156.
- 12Z. Man, J. Safaei, Z. Zhang, Y. Wang, D. Zhou, P. Li, X. Zhang, L. Jiang, G. Wang, J. Am. Chem. Soc. 2021, 143, 16206–16216.
- 13Y. Qian, D. Liu, G. Yang, L. Wang, Y. Liu, C. Chen, X. Wang, W. Lei, J. Am. Chem. Soc. 2022, 144, 13764–13772.
- 14D. Lei, Z. Zhang, L. Jiang, Chem. Soc. Rev. 2024, 53, 2300–2325.
- 15K. T. Tan, S. Ghosh, Z. Wang, F. Wen, D. Rodríguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. Feng, A. Thomas, D. Jiang, Nat. Rev. Methods Primers 2023, 3, 1.
- 16A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 17N. Hanikel, X. Pei, S. Chheda, H. Lyu, W. Jeong, J. Sauer, L. Gagliardi, O. M. Yaghi, Science 2021, 374, 454–459.
- 18K. Koner, S. Karak, S. Kandambeth, S. Karak, N. Thomas, L. Leanza, C. Perego, L. Pesce, R. Capelli, M. Moun, M. Bhakar, T. G. Ajithkumar, G. M. Pavan, R. Banerjee, Nat. Chem. 2022, 14, 507–514.
- 19X. Guan, F. Chen, S. Qiu, Q. Fang, Angew. Chem. Int. Ed. 2023, 62, e202213203.
- 20B. Gui, H. Ding, Y. Cheng, A. Mal, C. Wang, Trends Chem. 2022, 4, 437–450.
- 21H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang, S. Wang, Y. Ren, H. Wu, F. Pan, Z. Jiang, Chem. Soc. Rev. 2021, 50, 5468–5516.
- 22B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328–5331.
- 23H. S. Sasmal, A. Halder, S. Kunjattu H, K. Dey, A. Nadol, T. G. Ajithkumar, P. Ravindra Bedadur, R. Banerjee, J. Am. Chem. Soc. 2019, 141, 20371–20379.
- 24S. E. Neumann, J. Kwon, C. Gropp, L. Ma, R. Giovine, T. Ma, N. Hanikel, K. Wang, T. Chen, S. Jagani, R. O. Ritchie, T. Xu, O. M. Yaghi, Science 2024, 383, 1337–1343.
- 25Y. Zhang, H. Wang, W. Wang, Z. Zhou, J. Huang, F. Yang, Y. Bai, P. Sun, J. Ma, L. E. Peng, C. Y. Tang, L. Shao, Matter 2024, 7, 1406–1439.
- 26S. Chen, C. Zhu, W. Xian, X. Liu, X. Liu, Q. Zhang, S. Ma, Q. Sun, J. Am. Chem. Soc. 2021, 143, 9415–9422.
- 27T. Zhu, Y. Kong, B. Lyu, L. Cao, B. Shi, X. Wang, X. Pang, C. Fan, C. Yang, H. Wu, Z. Jiang, Nat. Commun. 2023, 14, 5926.
- 28T. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, W. D. Wang, W. Wang, J. Sun, O. M. Yaghi, Science 2018, 361, 48–52.
- 29X. Shi, Z. Zhang, C. Yin, X. Zhang, J. Long, Z. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2022, 61, e202207559.
- 30Y. Yang, Y. Chen, F. Izquierdo-Ruiz, C. Schäfer, M. Rahm, K. Börjesson, Nat. Commun. 2023, 14, 220.
- 31Z. Wang, Z. Zhang, H. Qi, A. Ortega-Guerrero, L. Wang, K. Xu, M. Wang, S. Park, F. Hennersdorf, A. Dianat, A. Croy, H. Komber, G. Cuniberti, J. J. Weigand, U. Kaiser, R. Dong, X. Feng, Nat. Synth. 2022, 1, 69–76.
- 32Y. Yang, B. Liang, J. Kreie, M. Hambsch, Z. Liang, C. Wang, S. Huang, X. Dong, L. Gong, C. Liang, D. Lou, Z. Zhou, J. Lu, Y. Yang, X. Zhuang, H. Qi, U. Kaiser, S. C. B. Mannsfeld, W. Liu, A. Gölzhäuser, Z. Zheng, Nature 2024, 630, 878–883.
- 33C. Kang, Z. Zhang, S. Kusaka, K. Negita, A. K. Usadi, D. C. Calabro, L. S. Baugh, Y. Wang, X. Zou, Z. Huang, R. Matsuda, D. Zhao, Nat. Mater. 2023, 22, 636–643.
- 34C.-W. Chu, A. R. Fauziah, L.-H. Yeh, Angew. Chem. Int. Ed. 2023, 62, e202303582.
- 35J. Yang, B. Tu, G. Zhang, P. Liu, K. Hu, J. Wang, Z. Yan, Z. Huang, M. Fang, J. Hou, Q. Fang, X. Qiu, L. Li, Z. Tang, Nat. Nanotechnol. 2022, 17, 622–628.
- 36J. Wang, Z. Cui, S. Li, Z. Song, M. He, D. Huang, Y. Feng, Y. Liu, K. Zhou, X. Wang, L. Wang, Nat. Commun. 2024, 15, 608.
- 37L. Cao, I. C. Chen, C. Chen, D. B. Shinde, X. Liu, Z. Li, Z. Zhou, Y. Zhang, Y. Han, Z. Lai, J. Am. Chem. Soc. 2022, 144, 12400–12409.
- 38C. Wang, F.-F. Liu, Z. Tan, Y.-M. Chen, W.-C. Hu, X.-H. Xia, Adv. Funct. Mater. 2020, 30, 1908804.
- 39J. Tang, Y. Wang, H. Yang, Q. Zhang, C. Wang, L. Li, Z. Zheng, Y. Jin, H. Wang, Y. Gu, T. Zuo, Nat. Commun. 2024, 15, 3649.
- 40J. Safaei, Y. Gao, M. Hosseinpour, X. Zhang, Y. Sun, X. Tang, Z. Zhang, S. Wang, X. Guo, Y. Wang, Z. Chen, D. Zhou, F. Kang, L. Jiang, G. Wang, J. Am. Chem. Soc. 2023, 145, 2669–2678.
- 41B. Cheng, Y. Zhong, Y. Qiu, S. Vaikuntanathan, J. Park, J. Am. Chem. Soc. 2023, 145, 5261–5269.
- 42X. Chang, M. Fan, C.-F. Gu, W.-H. He, Q. Meng, L.-J. Wan, Y.-G. Guo, Angew. Chem. Int. Ed. 2022, 61, e202202558.
- 43W. Xin, J. Fu, Y. Qian, L. Fu, X.-Y. Kong, T. Ben, L. Jiang, L. Wen, Nat. Commun. 2022, 13, 1701.
- 44Y. Huang, H. Zeng, L. Xie, R. Gao, S. Zhou, Q. Liang, X. Zhang, K. Liang, L. Jiang, B. Kong, J. Am. Chem. Soc. 2022, 144, 13794–13805.
- 45J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, J. Am. Chem. Soc. 2014, 136, 12265–12272.
- 46C. Liu, C. Ye, T. Zhang, J. Tang, K. Mao, L. Chen, L. Xue, J. Sun, W. Zhang, X. Wang, P. Xiong, G. Wang, J. Zhu, Angew. Chem. Int. Ed. 2024, 63, e202315947.
- 47Z. Zhang, P. Bhauriyal, H. Sahabudeen, Z. Wang, X. Liu, M. Hambsch, S. C. B. Mannsfeld, R. Dong, T. Heine, X. Feng, Nat. Commun. 2022, 13, 3935.
- 48Z. Zhang, L. He, C. Zhu, Y. Qian, L. Wen, L. Jiang, Nat. Commun. 2020, 11, 875.
- 49C. Li, H. Jiang, P. Liu, Y. Zhai, X. Yang, L. Gao, L. Jiang, J. Am. Chem. Soc. 2022, 144, 9472–9478.